Learn More
Piwi-interacting RNAs (piRNAs) silence transposons in animal germ cells. piRNAs are thought to derive from long transcripts spanning transposon-rich genomic loci and to direct an autoamplification loop in which an antisense piRNA, bound to Aubergine or Piwi protein, triggers production of a sense piRNA bound to the PIWI protein Argonaute3 (Ago3). In turn,(More)
The cohesin complex is a key player in regulating cell division. Cohesin proteins SMC1, SMC3, Rad21, and stromalin (SA), along with associated proteins Nipped-B, Pds5, and EcoI, maintain sister chromatid cohesion before segregation to daughter cells during anaphase. Recent chromatin immunoprecipitation (ChIP) data reveal extensive overlap of Nipped-B and(More)
O-linked N-acetylglucosamine transferase (OGT) reversibly modifies serine and threonine residues of many intracellular proteins with a single beta-O-linked N-acetylglucosamine residue (O-GlcNAc), and has been implicated in insulin signaling, neurodegenerative disease, cellular stress response, and other important processes in mammals. OGT also glycosylates(More)
In eukaryotes, the post-translational addition of methyl groups to histone H3 lysine 4 (H3K4) plays key roles in maintenance and establishment of appropriate gene expression patterns and chromatin states. We report here that an essential locus within chromosome 3L centric heterochromatin encodes the previously uncharacterized Drosophila melanogaster(More)
Hermansky-Pudlak syndrome (HPS) consists of a set of human autosomal recessive disorders, with symptoms resulting from defects in genes required for protein trafficking in lysosome-related organelles such as melanosomes and platelet dense granules. A number of human HPS genes and rodent orthologues have been identified whose protein products are key(More)
In this review, we combine the results of our published and unpublished work with the published results of other laboratories to provide an updated map of the centromeric heterochromatin of chromosome 3 in Drosophila melanogaster. To date, we can identify more than 20 genes (defined DNA sequences with well-characterized functions and (or) defined genetic(More)
  • 1