Learn More
Neutrophils are the first line of defense at the site of an infection. They encounter and kill microbes intracellularly upon phagocytosis or extracellularly by degranulation of antimicrobial proteins and the release of Neutrophil Extracellular Traps (NETs). NETs were shown to ensnare and kill microbes. However, their complete protein composition and the(More)
The pathogen Vibrio cholerae causes severe diarrheal disease in humans. This environmental inhabitant has two distinct life cycles, in the environment and in the human small intestine, in which it differs in its multiplication behavior and virulence expression. Anaerobiosis, limitation of some nutrient elements, and excess burden from host metabolism(More)
The binding of certain growth factors and cytokines to components of the extracellular matrix can regulate their local availability and modulate their biological activities. We show that mesenchymal cell-derived keratinocyte growth factor (KGF), a key stimulator of epithelial cell proliferation during wound healing, preferentially binds to collagens I, III,(More)
Peptide mass fingerprinting by MALDI-MS and sequencing by tandem mass spectrometry have evolved into the major methods for identification of proteins following separation by two-dimensional gel electrophoresis, SDS-PAGE or liquid chromatography. One main technological goal of proteome analyses beside high sensitivity and automation was the comprehensive(More)
The anaerobic Gram-positive bacterium Propionibacterium acnes is a human skin commensal that resides preferentially within sebaceous follicles; however, it also exhibits many traits of an opportunistic pathogen, playing roles in a variety of inflammatory diseases such as acne vulgaris. To date, the underlying disease-causing mechanisms remain ill-defined(More)
Investigating the proteome of intracellular pathogens is often hampered by inadequate methodologies to purify the pathogen free of host cell material. This has also precluded direct proteome analysis of the intracellular, amastigote form of Leishmania spp., protozoan parasites that cause a spectrum of diseases that affect some 12 million patients worldwide.(More)
Peptide mass fingerprinting (PMF) is a powerful tool for identification of proteins separated by two-dimensional electrophoresis (2-DE). With the increase in sensitivity of peptide mass determination it becomes obvious that even spots looking well separated on a 2-DE gel may consist of several proteins. As a result the number of mass peaks in PMFs increased(More)
The proteomics field has shifted over recent years from two-dimensional gel electrophoresis (2-DE)-based approaches to SDS-PAGE or gel-free workflows because of the tremendous developments in isotopic labeling techniques, nano-liquid chromatography, and high-resolution mass spectrometry. However, 2-DE still offers the highest resolution in protein(More)
Helicobacter pylori is one of the most common bacterial pathogens and causes a variety of diseases, such as peptic ulcer or gastric cancer. Despite intensive study of this human pathogen in the last decades, knowledge about its membrane proteins and, in particular, those which are putative components of the type IV secretion system encoded by the cag(More)
The Gram-negative, spiral-shaped bacterium Helicobacter pylori is a common human pathogen that causes chronic inflammation of the human gastric mucosa, leading to peptic ulceration and/or gastric cancer. Here, we analyzed changes in the phosphoproteome of gastric epithelial cells (AGS) upon infection with H. pylori using a combination of SILAC,(More)