Learn More
3D amoeboid cell migration is central to many developmental and disease-related processes such as cancer metastasis. Here, we identify a unique prototypic amoeboid cell migration mode in early zebrafish embryos, termed stable-bleb migration. Stable-bleb cells display an invariant polarized balloon-like shape with exceptional migration speed and persistence.(More)
We demonstrate the contrast enhancement of images within a ghost-imaging system by use of nonlocal phase filters. We use parametric down-conversion as the two-photon light source and two separated phase modulators, in the signal and idler arms which represent different phase filters and objects, respectively. We obtain edge enhanced images as a direct(More)
BACKGROUND OSAS has been associated with surrogate markers of atherosclerosis and is a known risk factor for stroke. However, there is limited data on the effects of recurring apneas in severe OSAS on cerebral circulation and their consequences on cerebrovascular reactivity and compliance. OBJECTIVE To evaluate cerebral blood flow velocity (CBFV) changes(More)
Recently a spatial spiral phase filter in a Fourier plane of a microscopic imaging setup has been demonstrated to produce edge enhancement and relief-like shadow formation of amplitude and phase samples. Here we demonstrate that a sequence of at least 3 spatially filtered images, which are recorded with different rotational orientations of the spiral phase(More)
We present a fast and flexible non-interferometric method for the correction of small surface deviations on spatial light modulators, based on the Gerchberg-Saxton algorithm. The surface distortion information is extracted from the shape of a single optical vortex, which is created by the light modulator. The method can be implemented in optical tweezers(More)
Using a new equibiaxial strain device, we investigated strain-induced Ca2+ signals and their relation to lamellar body (LB) exocytosis in single rat alveolar type II (AT II) cells. The strain device allows observation of single cells while inducing strain to the entire substratum. AT II cells tolerated high strain amplitudes up to 45% increase in cell(More)
We comment on a Letter by Toytman et al. [Opt. Lett.32, 1941 (2007)] in which a novel setup for wide-field imaging in coherent anti-Stokes Raman scattering (CARS) microscopy is demonstrated. There the authors state that our phase-matching implementation of a wide-field CARS system [Appl. Phys. Lett.84, 816 (2004); New J. Phys.8, 36 (2006)] suffers from a(More)
We demonstrate an optical method for edge contrast enhancement in light microscopy. The method is based on holographic Fourier plane filtering of the microscopic image with a spiral phase element (also called vortex phase or helical phase filter) displayed as an off-axis hologram at a computer controlled high resolution spatial light modulator (SLM) in the(More)
A modification of the phase contrast method in microscopy is presented, which reduces inherent artifacts and improves the spatial resolution. In standard Zernike phase contrast microscopy the illumination is achieved through an annular ring aperture, and the phase filtering operation is performed by a corresponding phase ring in the back focal plane of the(More)
Nematic liquid crystal spatial light modulators (SLMs) with fast switching times and high diffraction efficiency are important to various applications ranging from optical beam steering and adaptive optics to optical tweezers. Here we demonstrate the great benefits that can be derived in terms of speed enhancement without loss of diffraction efficiency from(More)