Monika Ritsch-Marte

Learn More
3D amoeboid cell migration is central to many developmental and disease-related processes such as cancer metastasis. Here, we identify a unique prototypic amoeboid cell migration mode in early zebrafish embryos, termed stable-bleb migration. Stable-bleb cells display an invariant polarized balloon-like shape with exceptional migration speed and persistence.(More)
We present an implementation method for noiseless holographic projection of precalculated light fields with a spatial light modulator. In the reconstructed image, both the spatial amplitude and phase distributions can be programmed independently. This is achieved by diffracting the light from two successive phase holograms that are located in conjugate(More)
The correlation behavior in the heart beat rate significantly differs with respect to light sleep, deep sleep, and REM sleep. We investigate whether fluctuations of the heart beat rhythm may serve as a surrogate parameter for rapidly changing sleep phenomena, and if these changes are accessible by progressive beat-by-beat analysis of the sleep(More)
Force spectroscopy has become an indispensable tool to unravel the structural and mechanochemical properties of biomolecules. Here we extend the force spectroscopy toolbox with an acoustic manipulation device that can exert forces from subpiconewtons to hundreds of piconewtons on thousands of biomolecules in parallel, with submillisecond response time and(More)
Radical tumor resection is the basis for the prolonged survival of patients suffering from malignant brain tumors such as glioblastoma multiforme. We have carried out a phase-II study involving 22 patients with malignant brain tumors to assess the feasibility and the effectiveness of the combination of intraoperative photodynamic diagnosis and(More)
We demonstrate a flexible setup for holographic steering of laser tweezers in microscopy using a high resolution spatial light modulator (SLM). In contrast to other methods, hologram read-out is done in the off-axis Fresnel regime rather than in the typically used on-axis Fourier regime. The diffractive structure is calculated as a Fresnel hologram, such(More)
Combining several methods for contact free micro-manipulation of small particles such as cells or micro-organisms provides the advantages of each method in a single setup. Optical tweezers, which employ focused laser beams, offer very precise and selective handling of single particles. On the other hand, acoustic trapping with wavelengths of about 1 mm(More)
a Many applications in the life-sciences demand non-contact manipulation tools for forceful but nevertheless delicate handling of various types of sample. Moreover, the system should support high-resolution optical imaging. Here we present a hybrid acoustic/optical manipulation system which utilizes a transparent transducer, making it compatible with(More)
Phase spatial light modulators (SLMs) are widely used for generating multifocal three-dimensional (3D) illumination patterns, but these are limited to a field of view constrained by the pixel count or size of the SLM. Further, with two-photon SLM-based excitation, increasing the number of focal spots penalizes the total signal linearly—requiring more laser(More)
Spatial Light Modulators (SLMs) can emulate the classic microscopy techniques, including differential interference (DIC) contrast and (spiral) phase contrast. Their programmability entails the benefit of flexibility or the option to multiplex images, for single-shot quantitative imaging or for simultaneous multi-plane imaging (depth-of-field multiplexing).(More)