Monika Marek-Kozaczuk

Learn More
 We have estimated the production of water-soluble B vitamins by plant growth-promoting rhizobacterium Pseudomonas fluorescens strain 267 in a minimal medium with different C sources and at different pH values. In the minimal medium, strain 267 produced large amounts of niacin (0.92 μg ml–1) and pantothenic acid (0.75 μg ml–1), but also other vitamins such(More)
The taxonomic status of the Rhizobium sp. K3.22 clover nodule isolate was studied by multilocus sequence analysis (MLSA) of 16S rRNA and six housekeeping chromosomal genes, as well as by a subsequent phylogenic analysis. The results revealed full congruence with the Rhizobium pisi DSM 30132(T) core genes, thus supporting the same taxonomic position for both(More)
Rhizobia are able to establish symbiosis with leguminous plants and usually occupy highly complex soil habitats. The large size and complexity of their genomes are considered advantageous, possibly enhancing their metabolic and adaptive potential and, in consequence, their competitiveness. A population of Rhizobium leguminosarum bv. trifolii organisms(More)
The competition potential of 14 Rhizobium leguminosarum bv. viciae isolates originating from nodules of Pisum sativum was estimated. Genotypic analyses of the isolates revealed a high level of chromosomal and plasmid content diversity. The isolates tagged with a plasmid-bearing constitutively expressed gusA gene were used to inoculate vetch (Vicia villosa)(More)
Sinorhizobium meliloti strains use several N-acylhomoserine lactone (AHL) autoinducers to sense the population density during saprophytic growth. Using a sensitive gfp-based AHL biosensor system, we show that synthesis of short-chain AHL molecules is inhibited (or significantly diminished) during the symbiotic phase of growth and is undetectable in the(More)
Plant growth promoting Pseudomonas fluorescens strain 267, isolated from soil, produced pseudobactin A, 7-sulfonic acid derivatives of pseudobactin A and several B group vitamins. In coinoculation with Rhizobium leguminosarum bv. trifolii strain 24.1, strain 267 promoted clover growth and enhanced symbiotic nitrogen fixation under controlled conditions. To(More)
Of 105 rhizobial isolates obtained from nodules of commonly cultivated legumes, we selected 19 strains on the basis of a high rate of symbiotic plant growth promotion. Individual strains within the species Rhizobium leguminosarum bv. trifolii, R. leguminosarum bv. viciae, and Rhizobium etli displayed variation not only in plasmid sizes and numbers but also(More)
Soil bacteria from the genus Rhizobium are characterized by a complex genomic architecture comprising chromosome and large plasmids. Genes responsible for symbiotic interactions with legumes are usually located on one of the plasmids, named the symbiotic plasmid (pSym). The plasmids have a great impact not only on the metabolic potential of rhizobia but(More)
Rhizobium leguminosarum by. trifolii (Rlt) establishes beneficial root nodule symbiosis with clover. Twenty Rlt strains differentially marked with antibiotic-resistance markers were investigated in terms of their competitiveness and plant growth promotion in mixed inoculation of clover in laboratory experiments. The results showed that the studied strains(More)
Flavonoids play a crucial role as signal molecules in promoting the formation of nodules by symbiotic bacteria commonly known as rhizobia. The early interaction between flavonoids and NodD regulatory protein activates nod gene transcription and the synthesis of Nod factor that initiates nodule primordium. In this study, we assessed response to flavonoids as(More)