Monika Aggarwal

Learn More
Modulation of DNA repair proteins by small molecules has attracted great interest. An in vitro helicase activity screen was used to identify molecules that modulate DNA unwinding by Werner syndrome helicase (WRN), mutated in the premature aging disorder Werner syndrome. A small molecule from the National Cancer Institute Diversity Set designated NSC 19630(More)
BACKGROUND AND AIM Gallstones are known to produce diverse histopathological changes in the gall bladder. Our aim was to correlate various gallstone characteristics (number, size, weight, volume and morphological type) with the type of mucosal response in gall bladder (inflammation, hyperplasia, metaplasia and carcinoma). METHODS The study was conducted(More)
Werner syndrome is genetically linked to mutations in WRN that encodes a DNA helicase-nuclease believed to operate at stalled replication forks. Using a newly identified small-molecule inhibitor of WRN helicase (NSC 617145), we investigated the role of WRN in the interstrand cross-link (ICL) response in cells derived from patients with Fanconi anemia, a(More)
Mutations in the p53 tumor-suppressor gene are prevalent in human cancers. The majority of p53 mutations are missense, which can be classified into contact mutations (that directly disrupts the DNA-binding activity of p53) and structural mutations (that disrupts the conformation of p53). Both of the mutations can disable the normal wild-type (WT) p53(More)
Our recently published work suggests that DNA helicases such as the Werner syndrome helicase (WRN) represent a novel class of proteins to target for anticancer therapy. Specifically, pharmacological inhibition of WRN helicase activity in human cells defective in the Fanconi anemia (FA) pathway of interstrand cross-link (ICL) repair are sensitized to the DNA(More)
Designing strategies for anti-cancer therapy have posed a significant challenge. One approach has been to inhibit specific DNA repair proteins and their respective pathways to enhance chemotherapy and radiation therapy used to treat cancer patients. Synthetic lethality represents an approach that exploits pre-existing DNA repair deficiencies in certain(More)
The WRN gene defective in the premature aging disorder Werner syndrome encodes a helicase/exonuclease. We examined the ability of WRN to rescue DNA damage sensitivity of a yeast mutant defective in the Rad50 subunit of Mre11-Rad50-Xrs2 nuclease complex implicated in homologous recombination repair. Genetic studies revealed WRN operates in a yEXO1-dependent(More)
BACKGROUND : The aim of this study was to evaluate and compare the postoperative graft patency assessment by multislice spiral computed tomography (MSCT) scan and conventional coronary angiography (CCA) in coronary artery bypass grafting (CABG) patients 1 year after surgery. METHODS : Sixty-nine patients who underwent isolated CABG at least 1 year before(More)
The importance of helicases in nucleic acid metabolism and human disease has raised the bar for understanding how these unique enzymes function to perform their biological roles at the molecular level. Here we will describe experimental procedures and strategies to investigate the functions of helicases. These functional assays have been used to study DNA(More)
Werner syndrome (WS) is a premature aging disorder characterized by genomic instability. The WRN gene defective in WS encodes a protein with both helicase and exonuclease activities that interacts with proteins implicated in DNA metabolism. To understand its genetic functions, we examined the ability of human WRN to rescue phenotypes associated with sgs1,(More)