Monika A. Sobczyk

Learn More
Anti-PEG antibodies have been reported to mediate the accelerated clearance of PEG-conjugated proteins and liposomes, all of which contain methoxyPEG (mPEG). The goal of this research was to assess the role of the methoxy group in the immune responses to mPEG conjugates and the potential advantages of replacing mPEG with hydroxyPEG (HO-PEG). Rabbits were(More)
The use of methoxypoly(ethylene glycol) (mPEG) in PEG conjugates of proteins and non-protein therapeutic agents has led to the recognition that the polymer components of such conjugates can induce anti-PEG antibodies (anti-PEGs) that may accelerate the clearance and reduce the efficacy of the conjugates. Others have classified anti-PEGs as(More)
The fragmentation of positively charged gas-phase samples of peptides is used to infer the primary structure of such molecules. In electron capture dissociation (ECD) experiments, very low-energy electrons attach to the sample and rupture bonds to effect the fragmentation. It turns out that ECD fragmentation tends to produce cleavage of very specific types(More)
In an attempt to shed light on the mechanism by which gaseous samples of negatively charged oligonucleotides undergo extremely slow (i.e., over 1-1000 s) charge loss, we have carried out molecular dynamics simulations on an oligonucleotide anion, T(5)(3-), containing five thymine, deoxyribose, and phosphate units in which the first, third, and fifth(More)
In this paper, we describe a computational model that allows us to avoid having to perform a very large number of tedious calculations on electronically metastable anions when studying indirect DEA processes. By indirect, we mean that the electron attaches to an orbital in one region of the molecule but a bond is subsequently broken in another region. For(More)
Ab initio electronic structure methods are used to estimate the cross sections for electron transfer from donor anions having electron binding energies ranging from 0.001 to 0.6 eV to each of three sites in a model disulfide-linked molecular cation. The three sites are (1) the S-S sigma(*) orbital to which electron attachment is rendered exothermic by(More)
  • 1