Learn More
A range of human degenerative conditions, including Alzheimer's disease, light-chain amyloidosis and the spongiform encephalopathies, is associated with the deposition in tissue of proteinaceous aggregates known as amyloid fibrils or plaques. It has been shown previously that fibrillar aggregates that are closely similar to those associated with clinical(More)
The intracellular free Ca(2+) concentration and redox status of murine fibroblasts exposed to prefibrillar aggregates of the HypF N-terminal domain have been investigated in vitro and in vivo using a range of fluorescent probes. Aggregate entrance into the cytoplasm is followed by an early rise of reactive oxygen species and free Ca(2+) levels and(More)
Muscle acylphosphatase (AcP) is a small protein that folds very slowly with two-state behavior. The conformational stability and the rates of folding and unfolding have been determined for a number of mutants of AcP in order to characterize the structure of the folding transition state. The results show that the transition state is an expanded version of(More)
The interaction of amyloid aggregates with the cell plasma membrane is currently considered among the basic mechanisms of neuronal dysfunction in amyloid neurodegeneration. We used amyloid oligomers and fibrils grown from the yeast prion Sup35p, responsible for the specific prion trait [PSI(+)], to investigate how membrane lipids modulate fibril interaction(More)
Five phosphotyrosine-containing peptides have been synthesized by FMOC solid-phase peptide synthesis. These peptides correspond to the 411-419 sequence of the Xenopus src oncogene, to the 1191-1220 sequence of the human EGF receptor precursor, to the 1146-1158 sequence of the human insulin receptor, to the 856-865 sequence of the human beta-PDGF receptor,(More)
p28 is a 28-amino acid peptide fragment of the cupredoxin azurin derived from Pseudomonas aeruginosa that preferentially penetrates cancerous cells and arrests their proliferation in vitro and in vivo. Its antitumor activity reportedly arises from post-translational stabilization of the tumor suppressor p53 normally downregulated by the binding of several(More)
The transcriptional regulator p53 plays an essential role in tumor suppression. Accordingly, it is found mutated, and its activity is reduced, in many human cancers. Recent reports show that some cancers are characterized by a loss of function of wild-type p53, which, in several cases, accumulates in intracellular aggregates. Although the nature of such(More)
Acylphosphatase can be converted in vitro, by addition of trifluoroethanol (TFE), into amyloid fibrils of the type observed in a range of human diseases. The propensity to form fibrils has been investigated for a series of mutants of acylphosphatase by monitoring the range of TFE concentrations that result in aggregation. We have found that the tendency to(More)
More than 40 human diseases are associated with fibrillar deposits of specific peptides or proteins in tissue. Amyloid fibrils, or their precursors, can be highly toxic to cells, suggesting their key role in disease pathogenesis. Proteins not associated with any disease are able to form oligomers and amyloid assemblies in vitro displaying structures and(More)
The discovery of methods suitable for the conversion in vitro of native proteins into amyloid fibrils has shed light on the molecular basis of amyloidosis and has provided fundamental tools for drug discovery. We have studied the capacity of a small library of tetracycline analogues to modulate the formation or destructuration of β2-microglobulin fibrils.(More)