Monica Bucciantini

Learn More
A range of human degenerative conditions, including Alzheimer's disease, light-chain amyloidosis and the spongiform encephalopathies, is associated with the deposition in tissue of proteinaceous aggregates known as amyloid fibrils or plaques. It has been shown previously that fibrillar aggregates that are closely similar to those associated with clinical(More)
Muscle acylphosphatase (AcP) is a small protein that folds very slowly with two-state behavior. The conformational stability and the rates of folding and unfolding have been determined for a number of mutants of AcP in order to characterize the structure of the folding transition state. The results show that the transition state is an expanded version of(More)
The intracellular free Ca(2+) concentration and redox status of murine fibroblasts exposed to prefibrillar aggregates of the HypF N-terminal domain have been investigated in vitro and in vivo using a range of fluorescent probes. Aggregate entrance into the cytoplasm is followed by an early rise of reactive oxygen species and free Ca(2+) levels and(More)
p28 is a 28-amino acid peptide fragment of the cupredoxin azurin derived from Pseudomonas aeruginosa that preferentially penetrates cancerous cells and arrests their proliferation in vitro and in vivo. Its antitumor activity reportedly arises from post-translational stabilization of the tumor suppressor p53 normally downregulated by the binding of several(More)
Five phosphotyrosine-containing peptides have been synthesized by FMOC solid-phase peptide synthesis. These peptides correspond to the 411-419 sequence of the Xenopus src oncogene, to the 1191-1220 sequence of the human EGF receptor precursor, to the 1146-1158 sequence of the human insulin receptor, to the 856-865 sequence of the human beta-PDGF receptor,(More)
More than 40 human diseases are associated with fibrillar deposits of specific peptides or proteins in tissue. Amyloid fibrils, or their precursors, can be highly toxic to cells, suggesting their key role in disease pathogenesis. Proteins not associated with any disease are able to form oligomers and amyloid assemblies in vitro displaying structures and(More)
Much information has appeared in the last few years on the low resolution structure of amyloid fibrils and on their non-fibrillar precursors formed by a number of proteins and peptides associated with amyloid diseases. The fine structure and the dynamics of the process leading misfolded molecules to aggregate into amyloid assemblies are far from being fully(More)
The interaction of amyloid aggregates with the cell plasma membrane is currently considered among the basic mechanisms of neuronal dysfunction in amyloid neurodegeneration. We used amyloid oligomers and fibrils grown from the yeast prion Sup35p, responsible for the specific prion trait [PSI(+)], to investigate how membrane lipids modulate fibril interaction(More)
Acylphosphatase can be converted in vitro, by addition of trifluoroethanol (TFE), into amyloid fibrils of the type observed in a range of human diseases. The propensity to form fibrils has been investigated for a series of mutants of acylphosphatase by monitoring the range of TFE concentrations that result in aggregation. We have found that the tendency to(More)
The HypF N-terminal domain has been found to convert readily from its native globular conformation into protein aggregates with the characteristics of amyloid fibrils associated with a variety of human diseases. This conversion was achieved by incubation at acidic pH or in the presence of moderate concentrations of trifluoroethanol. Electron microscopy(More)