Monica Agromayor

Learn More
The endosomal sorting complex required for transport (ESCRT) machinery plays an evolutionarily conserved role in cytokinetic abscission, the final step of cell division where daughter cells are physically separated. Here, we show that charged multivesicular body (MVB) protein 4C (CHMP4C), a human ESCRT-III subunit, is involved in abscission timing. This(More)
The last steps of multivesicular body (MVB) formation, human immunodeficiency virus (HIV)-1 budding and cytokinesis require a functional endosomal sorting complex required for transport (ESCRT) machinery to facilitate topologically equivalent membrane fission events. Increased sodium tolerance (IST) 1, a new positive modulator of the ESCRT pathway, has been(More)
The endosomal sorting complexes required for transport (ESCRTs) facilitate endosomal sorting of ubiquitinated cargo, MVB biogenesis, late stages of cytokinesis, and retroviral budding. Here we show that ubiquitin associated protein 1 (UBAP1), a subunit of human ESCRT-I, coassembles in a stable 1:1:1:1 complex with Vps23/TSG101, VPS28, and VPS37. The X-ray(More)
The ESCRT machinery functions in topologically equivalent membrane fission events, namely multivesicular body formation, the terminal stages of cytokinesis and HIV-1 release. Here, we show that the ESCRT-III-binding protein Alix is recruited to the midbody of dividing cells through binding Cep55 via an evolutionarily conserved peptide. Disruption of(More)
The "class E" vacuolar protein sorting (VPS) pathway mediates sorting of ubiquitinated cargo into the forming vesicles of the multivesicular bodies (MVB), and it is essential for down-regulation of signaling by growth factors and budding of enveloped viruses such as Ebola and HIV-1. Work in yeast has identified DOA4 as a gene that is recruited by the class(More)
Abscission, the final step of cytokinesis, mediates the severing of the membrane tether, or midbody, that connects two daughter cells. It is now recognized that abscission is a complex process requiring tight spatiotemporal regulation of its machinery to ensure equal chromosome segregation and cytoplasm content distribution between daughter cells. Failure(More)
The endosomal sorting complexes required for transport (ESCRT) machinery mediates the physical separation between daughter cells during cytokinetic abscission. This process is regulated by the abscission checkpoint, a genome protection mechanism that relies on Aurora B and the ESCRT-III subunit CHMP4C to delay abscission in response to chromosome(More)
The endosomal sorting complexes required for transport (ESCRT) proteins have a critical function in abscission, the final separation of the daughter cells during cytokinesis. Here, we describe the structure and function of a previously uncharacterized ESCRT-III interacting protein, MIT-domain containing protein 1 (MITD1). Crystal structures of MITD1 reveal(More)
Neural circuits are refined by both functional and structural changes. Structural remodeling by large-scale pruning occurs where relatively long neuronal branches are cut away from their parent neuron and removed by local degeneration. Until now, the molecular mechanisms executing such branch severing events have remained poorly understood. Here, we reveal(More)
  • 1