Learn More
Postmenopausal osteoporosis, a global public health problem, has for decades been attributed solely to declining estrogen levels. Although FSH levels rise sharply in parallel, a direct effect of FSH on the skeleton has never been explored. We show that FSH is required for hypogonadal bone loss. Neither FSHbeta nor FSH receptor (FSHR) null mice have bone(More)
Sequence polymorphisms linked to human diseases and phenotypes in genome-wide association studies often affect noncoding regions. A SNP within an intron of the gene encoding Interferon Regulatory Factor 4 (IRF4), a transcription factor with no known role in melanocyte biology, is strongly associated with sensitivity of skin to sun exposure, freckles, blue(More)
itochondrial genetic and metabolic stress causes activation of calcineurin (Cn), NFAT, ATF2, and NF ␬ B/Rel factors, which collectively alter the expression of an array of nuclear genes. We demonstrate here that mitochondrial stress–induced activation of NF ␬ B/Rel factors involves inactivation of I ␬ B ␤ through Cn-mediated dephosphorylation.(More)
We characterized the differentiation of rat bone marrow-derived mesenchymal stem cells (BM-MSCs) into tenocyte-like cells in response to bone morphogenetic protein-12 (BMP-12). BM-MSCs were prepared from Sprague-Dawley rats and cultured as monolayers. Recombinant BMP-12 treatment (10 ng/ml) of BM-MSCs for 12 hours in vitro markedly increased expression of(More)
The established function of thyroid stimulating hormone (TSH) is to promote thyroid follicle development and hormone secretion. The osteoporosis associated with hyperthyroidism is traditionally viewed as a secondary consequence of altered thyroid function. We provide evidence for direct effects of TSH on both components of skeletal remodeling, osteoblastic(More)
The therapeutic benefits of adrenocorticotropic hormone in multiple sclerosis are usually ascribed to its corticotropic actions. Evidence is presented that adrenocorticotropic hormone, approved for multiple sclerosis relapses, acts via corticosteroid-independent melanocortin pathways to engender down-modulating actions on immune-system cells and the(More)
CD38 is an ectocyclase that converts NAD+ to the Ca2+-releasing second messenger cyclic ADP-ribose (cADPr). Here we report that in addition to CD38 ecto-catalysis, intracellularly expressed CD38 may catalyze NAD+-->cADPr conversion to cause cytosolic Ca2+ release. High levels of CD38 were found in the plasma membranes, endoplasmic reticulum, and nuclear(More)
Cutaneous malignant melanoma is a highly aggressive and frequently chemoresistant cancer, the incidence of which continues to rise. Epidemiological studies show that the major aetiological melanoma risk factor is ultraviolet (UV) solar radiation, with the highest risk associated with intermittent burning doses, especially during childhood. We have(More)
We have evaluated the role of the ADP-ribosyl cyclase, CD38, in bone remodeling, a process by which the skeleton is being renewed constantly through the coordinated activity of osteoclasts and osteoblasts. CD38 catalyzes the cyclization of its substrate, NAD+, to the Ca2+-releasing second messenger, cyclic ADP-ribose (cADPr). We have shown previously that(More)