Monali C Rahalkar

Learn More
Roots are the primary site of interaction between plants and microorganisms. To meet food demands in changing climates, improved yields and stress resistance are increasingly important, stimulating efforts to identify factors that affect plant productivity. The role of bacterial endophytes that reside inside plants remains largely unexplored, because(More)
The composition of diatom-associated bacterial communities was studied with 14 different unialgal xenic diatom cultures isolated from freshwater epilithic biofilms of Lake Constance, Germany. A clear dominance of Alphaproteobacteria was observed, followed by Betaproteobacteria, Gammaproteobacteria, Bacteroidetes, and Verrucomicrobia. Pure cultures of the(More)
A novel methanotroph, strain LC 2(T), was isolated from the littoral sediment of Lake Constance by enrichment in opposing gradients of methane and oxygen, followed by traditional isolation methods. Strain LC 2(T) grows on methane or methanol as its sole carbon and energy source. It is a Gram-negative, non-motile, pale-pink-coloured methanotroph showing(More)
The abundances and activities of aerobic methane-oxidizing bacteria (MOB) were compared in depth profiles of littoral and profundal sediments of Lake Constance, Germany. Abundances were determined by quantitative PCR (qPCR) targeting the pmoA gene and by fluorescence in situ hybridization (FISH), and data were compared to methane oxidation rates calculated(More)
In sediments, methane-oxidizing bacteria live in opposing gradients of methane and oxygen. In such a gradient system, the fluxes of methane and oxygen are controlled by diffusion and consumption rates, and the rate-limiting substrate is maintained at a minimum concentration at the layer of consumption. Opposing gradients of methane and oxygen were mimicked(More)
25 Introduction 26 Materials and Methods 28 Results 36 Discussion 47 3. Characterization of a novel methanotroph, Methylosoma difficile gen. nov., sp. nov., enriched by gradient cultivation from littoral sediment of Lake Constance 55 Summary 55 Introduction 57 Methods 58 Results and 64 Discussion 4. Comparison of aerobic methanotrophic communities in(More)
Analysis of pmoA and 16S rRNA gene clone libraries of methanotrophic bacteria in Lake Constance revealed an overall dominance of type I methanotrophs in both littoral and profundal sediments. The sediments exhibited minor differences in their methanotrophic community structures. Type X methanotrophs made up a significant part of the clone libraries only in(More)
An alphaproteobacterium, strain Dia-1(T), was isolated from algae-dominated biofilms on stones from the littoral zone of Lake Constance, Germany. This bacterium was isolated after initial enrichment in spent medium obtained after growth of a diatom culture. Numerous sugars and some organic acids and alcohols served as growth substrates. The bacterium grew(More)
Flooded rice fields are important sources of atmospheric methane. Aerobic methanotrophs living in the vicinity of rice roots oxidize methane and act as environmental filters. Here, we present genome characteristics of a gammaproteobacterial methanotroph, isolate Sn10-6, which was isolated from a rice rhizosphere of a flooded field in India. Sn10-6 has been(More)
Elstera litoralis, is a Rhodospirillaceae member which was isolated from the littoral zone of Lake Constance from a stone biofilm using diatom extracellular polymeric substances (EPS) as C source. We present here the draft genome of E. litoralis which has a genome size of 3.83 Mb and 61.2% G+C content. Genome analysis indicated utilization of multiple C(More)