Mona Semsarilar

Learn More
This critical review is concerned with the recent advances in graft polymerisation techniques involving cellulose and its derivatives. It summarises some of the features of cellulose structure and cellulose reactivity. Also described are the various techniques for grafting synthetic polymers from the cellulosic substrate. In addition to the traditional(More)
Recent advances in polymer science are enabling substantial progress in nanobiotechnology, particularly in the design of new tools for enhanced understanding of cell biology and for smart drug delivery formulations. Herein, a range of novel galactosylated diblock copolymer nano-objects is prepared directly in concentrated aqueous solution via reversible(More)
Synthesis of diblock copolymer nano-objects: alcohol is a good idea! RAFT dispersion polymerization of benzyl methacrylate in alcohol using weak polyelectrolyte-based chain transfer agents allows the facile synthesis of sterically stabilized diblock copolymer nano-objects with very high monomer conversions. Such syntheses are usually problematic when(More)
Reversible addition-fragmentation chain-transfer (RAFT) polymerization has revolutionized the field of polymer synthesis as a versatile tool for the production of complex polymeric architectures. As for all chemical processes, research and development in RAFT have to focus on the design and application of chemical products and processes that have a minimum(More)
We report the synthesis of anionic sterically stabilized diblock copolymer nanoparticles via polymerization-induced self-assembly using a RAFT aqueous dispersion polymerization formulation. The anionic steric stabilizer is a macromolecular chain-transfer agent (macro-CTA) based on poly(potassium 3-sulfopropyl methacrylate) (PKSPMA), and the hydrophobic(More)
Herein, a membrane prepared from the self-assembly of poly(styrene-co-acrylonitrile)-b-poly(ethylene oxide)-b-poly(styrene-co-acrylonitrile) micelles is found to exhibit translocation of nano-objects dispersed in aqueous solution. With the water flow as a driving force, temporary pores are created in between the micelles to facilitate the passage of(More)
We report the synthesis of cationic sterically stabilized diblock copolymer nanoparticles via polymerization-induced self-assembly (PISA) using a RAFT aqueous dispersion polymerization formulation. The cationic steric stabilizer is a macromolecular chain-transfer agent (macro-CTA) based on quaternized poly(2-(dimethylamino)ethyl methacrylate) (PQDMA), and(More)
Block copolymer self-assembly is normally conducted via post-polymerization processing at high dilution. In the case of block copolymer vesicles (or "polymersomes"), this approach normally leads to relatively broad size distributions, which is problematic for many potential applications. Herein we report the rational synthesis of low-polydispersity diblock(More)
Amphiphilic diblock copolymer containing randomly distributed positive and negative charged monomers are synthesized using RAFT polymerization technique to be used as anti-bioadhesion coatings for hydrophobic surfaces. Quaternized 2-(dimethylamino) ethyl methacrylate and potassium 3-sulfopropyl methacrylate (P[qDMAEMA-co-KSPMA]) are randomly polymerized to(More)
Glycopolymer-based nanostructures are invaluable tools to both study biological phenomena and to design future targeted drug delivery systems. Polymerization-induced self-assembly, especially RAFT aqueous dispersion polymerization is a unique method to prepare such polymer nanostructures, as it enables the preparation of very-well-defined morphologies at(More)
  • 1