Learn More
Genetic diseases demonstrate that the normal function of CNS myelin depends on connexin32 (Cx32) and Cx47, gap junction (GJ) proteins expressed by oligodendrocytes. GJs couple oligodendrocytes and astrocytes (O/A channels) as well as astrocytes themselves (A/A channels). Because astrocytes express different connexins (Cx30 and Cx43), O/A channels must be(More)
CMTX, the X-linked form of Charcot-Marie-Tooth disease, is an inherited peripheral neuropathy arising in patients with mutations in the gene encoding the gap junction protein connexin 32 (Cx32). In this communication, we describe the expression levels and biophysical parameters of seven mutant forms of Cx32 associated with CMTX, when expressed in paired(More)
Connexin 32 (Cx32), a gap junction protein, is found within the para-nodal region and Schmidt-Lanterman incisures of myelinating Schwann cells (SCs). In developing and regenerating peripheral nerves, pro-myelinating SCs express Cx32 mRNA and protein in conjunction with the expression of myelin specific genes. Neuregulin-1 (Nrg1), a member of the neuregulin(More)
The nervous and immune systems interact in a bidirectional fashion. For example, the neuropeptide substance P (SP) has been implicated in a variety of immune responses. Conversely, cytokines, a class of immunoregulatory glycoproteins, affect the synthesis of neurotransmitters and neurotrophic factors. This paper examines the role of cytokines in regulating(More)
Recessive mutations in GJA12/GJC2, the gene that encodes the gap junction protein connexin47 (Cx47), cause Pelizaeus-Merzbacher-like disease (PMLD), an early onset dysmyelinating disorder of the CNS, characterized by nystagmus, psychomotor delay, progressive spasticity and cerebellar signs. Here we describe three patients from one family with a novel(More)
X-linked Charcot-Marie-Tooth disease is an inherited peripheral neuropathy arising in patients with mutations in the gene encoding connexin 32 (Cx32). Cx32 is expressed at the paranodes and Schmidt-Lantermann incisures of myelinating Schwann cells in which it is believed to form a reflexive pathway between the abaxonal and adaxonal cytoplasmic domains.(More)
Autonomic neurons help to regulate immune responses, and there are reciprocal interactions between the nervous and immune systems. This study seeks to define some of the molecular mechanisms that may underlie such interactions. Immunoblot analysis indicated that cultured sympathetic neurons synthesize and release the cytokine interleukin 1 beta (IL-1 beta).(More)
Programmed cell death (PCD) of sympathetic neurons is inhibited by nerve growth factor. However, factors that induce PCD of these cells are unknown. Leukemia inhibitory factor (LIF) and ciliary neurotrophic factor, neuropoietic cytokines known to regulate sympathetic neuron gene expression, were examined for effects on survival of cultured sympathetic(More)
Charcot–Marie–Tooth disease (CMT) is a group of inherited diseases characterized by exclusive or predominant involvement of the peripheral nervous system. Mutations in GJB1, the gene encoding Connexin 32 (Cx32), a gap-junction channel forming protein, cause the most common X-linked form of CMT, CMT1X. Cx32 is expressed in Schwann cells and oligodendrocytes,(More)
Charcot Marie Tooth disease (CMT) is a group of inherited disorders characterized clinically by exclusively or predominantly peripheral nerve dysfunction. CMT1X, the most common form of X-linked CMT is caused by mutations in connexin 32 (Cx32). In this work, we used dual whole cell patch clamp recording to examine the functional effects of mutations at the(More)