Mohsen Zeeb

Learn More
A novel and selective procedure for the determination of l-cysteine and l-cystine based on vapour-generation Fourier transform infrared spectrometry is described. Potassium iodate solution was injected into a glass vessel containing l-cysteine and/or l-cystine. The evolved CO was swept by a stream of nitrogen to an infrared gas cell. The vapour phase FTIR(More)
In this work, an efficient in situ solvent formation microextraction (ISFME) was combined with stopped-flow injection spectrofluorimetry (SFIS) for the determination of copper. In the proposed approach, thiamine was oxidized with copper(II) to form hydrophobic and highly fluorescent thiochrome (TC), which was subsequently extracted into ionic liquid as an(More)
In this work, an on-line system with vapor-phase generation (VPG) and Fourier transform infrared (FTIR) spectrometric detection has been developed as a direct and highly selective analytical technique for the assay of penicillamine (PA). Potassium iodate solution was injected into a reactor, heated at 75 degrees C, containing PA. The CO generated under(More)
Piroxicam (PXM) belongs to the wide class of non-steroidal anti-inflammatory drugs (NSAIDs). PXM has been widely applied in the treatment of rheumatoid arthritis, gonarthrosis, osteoarthritis, backaches, neuralgia, mialgia. In the presented work, a green and benign sample pretreatment method called temperature-controlled ionic liquid dispersive liquid phase(More)
Background: Several in vitro assays are used to determine Angiotensin Converting Enzyme (ACE) activity. The purpose of the present investigation, was developing a practical and extraction-free chromatographic method to determine ACE activity. Methods: The method relies on UV-detection of Naphthoyl-glycine (NG), which is resulted from enzymatic hydrolysis of(More)
An efficient analytical method called ionic-liquid-based ultrasound-assisted in situ solvent formation microextraction followed by high-performance liquid chromatography was developed for the determination of atenolol in human plasma. A hydrophobic ionic liquid (1-butyl-3-methylimidazolium hexafluorophosphate) was formed by the addition of a hydrophilic(More)
Carvedilol belongs to a group of medicines termed non-selective beta-adrenergic blocking agents. In the presented approach, a practical and environmentally friendly microextraction method based on the application of ionic liquids (ILs) was followed by fluorescence spectrometry for trace determination of carvedilol in pharmaceutical and biological media. A(More)
  • 1