Mohsen Davarynejad

Learn More
Spread spectrum audio watermarking (SSW) is one of the most powerful techniques for secure audio watermarking. SSW hides information by spreading the spectrum. The hidden information is called the 'watermark' and is added to a host signal, making the latter a watermarked signal. The spreading of the spectrum is carried out by using a pseudo-noise (PN)(More)
Nature may have been the original inspiration for evolutionary algorithms, but unlike artificially designed systems, nature has an abundance of resources and time. For man-made systems, computational complexity is a prohibitive factor in sufficiently large and complex problems of today. Much of this computational complexity is due to the fitness function(More)
No requirement for derivative information, Need large number of fitness evaluations, In the case of multiple objective optimization problems, the complexity increases with the number of objectives. No requirement for derivative information, Need large number of fitness evaluations, In the case of multiple objective optimization problems, the complexity(More)
Attack trees are a well-known formalism for quantitative analysis of cyber attacks consisting of multiple steps and alternative paths. It is possible to derive properties of the overall attacks from properties of individual steps, such as cost for the attacker and probability of success. However, in existing formalisms, such properties are considered(More)
Much of the computational complexity in employing evolutionary algorithms as optimization tool is due to the fitness function evaluation that may either not exist or be computationally very expensive. With the proposed approach, the expensive fitness evaluation step is replaced by an approximate model. An intelligent guided technique via an adaptive fuzzy(More)
—Gene association/interaction networks have complex structures that provide a better understanding of mechanisms at the molecular level that govern essential processes inside the cell. The interaction mechanisms are conventionally modeled by nonlinear dynamic systems of coupled differential equations (S-systems) adhering to the power-law formalism. Our(More)
The standard reinforcement learning algorithms have proven to be effective tools for letting an agent learn from its experiences generated by its interaction with an environment. Among others, reinforcement learning algorithms are of interest because they require no explicit model of the environment beforehand and learning happens through trial and error.(More)
Computational complexity is a prohibitive factor in evolutionary optimization of sufficiently large and/or complex problems. Much of this computational complexity is due to the fitness function evaluation that may either not exist or be computationally very expensive. Here, we investigate the use of fitness granulation via an adaptive fuzzy similarity(More)