Mohan R K Dasu

Learn More
OBJECTIVE Individuals with type 2 diabetes have a myriad of metabolic aberrations including increased inflammation, increasing their cardiovascular risk. Toll-like receptors (TLRs) and their ligands play a key role in insulin resistance and atherosclerosis. However, there is a paucity of data examining the expression and activity of TLRs in type 2 diabetes.(More)
CONTEXT Type 1 diabetes (T1DM) is associated with increased cardiovascular mortality. It is a pro-inflammatory state as evidenced by increased circulating biomarkers and monocyte activity. The toll-like receptors (TLRs) are pattern recognition receptors, expressed abundantly on monocytes. TLR2 and TLR4 are important in atherosclerosis. However, there is a(More)
OBJECTIVE Hyperglycemia-induced inflammation is central in diabetes complications, and monocytes are important in orchestrating these effects. Toll-like receptors (TLRs) play a key role in innate immune responses and inflammation. However, there is a paucity of data examining the expression and activity of TLRs in hyperglycemic conditions. Thus, in the(More)
Previously, IL-1beta secretion from Type 2 diabetic patients has been shown to be increased compared with controls. In this study, we aimed to delineate the mechanism of IL-1beta induction under high-glucose (HG) conditions in human monocytes. THP-1 cells cultured in normal glucose were treated with increasing concentrations of d-glucose (10-25 mM) for 6-72(More)
The structural rearrangement of collagen fibres in hypertrophic scar causes abnormal contracture, low tensile strength, and raised scars, which cause functional impairment and disfigurement. It is hypothesized that changes in the genes of cytokines, extracellular matrix proteins, and proteins regulating programmed cell death are related to hypertrophic scar(More)
Type 2 diabetes (T2DM) is characterized by hyperglycemia, dyslipidemia, and increased inflammation. Previously, we showed that high glucose (HG) induces Toll-like receptor (TLR) expression, activity, and inflammation via NF-κB followed by cytokine release in vitro and in vivo. Here, we determined how HG-induced inflammation is affected by free fatty acids(More)
The events occurring early in the burn wound trigger a sequence of local and systemic responses that influence cell and tissue survival and, consequently, wound healing and recovery. Using high-density oligonucleotide arrays we identified gene expression patterns in skin samples taken from a region of injury in the burn rat model. The associated genomic(More)
Toll-like receptors (TLRs) are key innate immune sensors of endogenous damage signals and play an important role in inflammatory diseases like diabetes and atherosclerosis. Pioglitazone (PIO), a peroxisome proliferator-activated receptor (PPAR)-gamma agonist, has been reported to be an antiinflammatory agent. Thus, in the present study, we examined the(More)
OBJECTIVE To determine the effects of the anabolic agent oxandrolone on muscle protein and gene expression in severely burned children. SUMMARY BACKGROUND DATA The authors previously showed that oxandrolone increased net muscle protein synthesis in emaciated burned patients receiving delayed treatment for severe burns. They hypothesized that similar(More)
C-reactive protein (CRP) is present in the atherosclerotic plaques and appears to promote atherogenesis. Intraplaque CRP colocalizes with oxidized low density lipoprotein (OxLDL) and macrophages in human atherosclerotic lesions. Matrix metalloproteinase-9 (MMP-9) has been implicated in plaque rupture. CRP promotes OxLDL uptake and MMP induction in vitro;(More)