Mohammed Shawkat Razzaque

Learn More
Fibroblast growth factor-23 (FGF-23), a recently identified molecule that is mutated in patients with autosomal dominant hypophosphatemic rickets (ADHR), appears to be involved in the regulation of phosphate homeostasis. Although increased levels of circulating FGF-23 were detected in patients with different phosphate-wasting disorders such as oncogenic(More)
Appropriate levels of phosphate in the body are maintained by the coordinated regulation of the bone-derived growth factor FGF23 and the membrane-bound protein Klotho. The endocrine actions of FGF23, in association with parathyroid hormone and vitamin D, mobilize sodium–phosphate cotransporters that control renal phosphate transport in proximal tubular(More)
Unique among fibroblast growth factors (FGFs), FGF19, -21, and -23 act in an endocrine fashion to regulate energy, bile acid, glucose, lipid, phosphate, and vitamin D homeostasis. These FGFs require the presence of Klotho/betaKlotho in their target tissues. Here, we present the crystal structures of FGF19 alone and FGF23 in complex with sucrose octasulfate,(More)
Klotho has profound effects on phosphate metabolism, but the mechanisms of how Klotho affects phosphate homeostasis is unknown. We detected Klotho in the proximal tubule cell, brush border, and urinary lumen, where phosphate homeostasis resides. Increasing Klotho in the kidney and urine chronically by transgenic overexpression or acutely by intravenous(More)
Indian hedgehog (Ihh) is essential for chondrocyte and osteoblast proliferation/differentiation during prenatal endochondral bone formation. The early lethality of various Ihh-ablated mutant mice, however, prevented further analysis of its role in postnatal bone growth and development. In this study, we describe the generation and characterization of a(More)
Fibroblast growth factor (FGF) 23 inhibits renal phosphate reabsorption by activating FGF receptor (FGFR) 1c in a Klotho-dependent fashion. The phosphaturic activity of FGF23 is abrogated by proteolytic cleavage at the RXXR motif that lies at the boundary between the FGF core homology domain and the 72-residue-long C-terminal tail of FGF23. Here, we show(More)
Pulmonary fibrosis resulting from increased accumulation of various extracellular matrices is a prominent feature in chronic progressive lung diseases. Heat shock protein 47 (HSP47) is a collagen-binding stress protein known to have a specific role in the intracellular processing of procollagen molecules as a collagen-specific molecular chaperone in various(More)
Vitamin D is a multifunctional hormone that can affect many essential biological functions, ranging from the immune regulation to mineral ion metabolism. A close association between altered activity of vitamin D and vascular calcification has been reported in various human diseases, including in patients with atherosclerosis, osteoporosis, and chronic(More)
The mechanism of structural changes of the kidney in human diabetic nephropathy (DN) and IgA nephropathy (IgAN) is not yet completely known, but excessive deposition of extracellular matrix (ECM), including various collagens, may be crucial to this process. Heat shock protein (HSP) 47 has been identified as collagen-binding stress protein, shown to have a(More)
Maintenance of physiologic phosphate balance is important for essential cellular functions [1]. Dysregulation of the phosphate balance in the form of hypophosphataemia can lead to the development of myopathy, cardiac dysfunction, haematological abnormalities and bone mineralization defects [1]. In contrast, hyperphosphataemia can cause vascular and soft(More)