Mohammed Shakil Ahmed

Learn More
CCN2/connective tissue growth factor (CTGF), a CCN family matricellular protein repressed in healthy hearts after birth, is induced in heart failure of various etiologies. Multiple cellular and biological functions have been assigned to CCN2/CTGF depending on cellular context. However, the functions and mechanisms of action of CCN2/CTGF in the heart as well(More)
AIMS Myocardial CCN2/CTGF is induced in heart failure of various etiologies. However, its role in the pathophysiology of left ventricular (LV) remodeling after myocardial infarction (MI) remains unresolved. The current study explores the role of CTGF in infarct healing and LV remodeling in an animal model and in patients admitted for acute ST-elevation MI.(More)
RATIONALE Inflammatory mechanisms have been suggested to play a role in the development of heart failure (HF), but a role for chemokines is largely unknown. Based on their role in inflammation and matrix remodeling in other tissues, we hypothesized that CXCL13 and CXCR5 could be involved in cardiac remodeling during HF. OBJECTIVE We sought to analyze the(More)
Transgenic mice with cardiac-specific expression of a peptide inhibitor of G protein-coupled receptor kinase (GRK)3 [transgenic COOH-terminal GRK3 (GRK3ct) mice] display myocardial hypercontractility without hypertrophy and enhanced α(1)-adrenergic receptor signaling. A role for GRK3 in the pathogenesis of heart failure (HF) has not been investigated, but(More)
BACKGROUND CCL21 acting through CCR7, is termed a homeostatic chemokine. Based on its role in concerting immunological responses and its proposed involvement in tissue remodeling, we hypothesized that this chemokine could play a role in myocardial remodeling during left ventricular (LV) pressure overload. METHODS AND RESULTS Our main findings were: (i)(More)
  • 1