Mohammed I. Alghamdi

Learn More
Real-time applications in wireless networks are emerging in multimedia product and design. However, conventional real-time message scheduling algorithms generally do not take energy efficiency into account when making scheduling decisions. In this paper, we address the issue of scheduling real-time messages in wireless networks subject to timing and power(More)
High performance clusters have been widely used to provide amazing computing capability for both commercial and scientific applications. However, huge power consumption has prevented the further application of large-scale clusters. Designing energy-efficient scheduling algorithms for parallel applications running on clusters, especially on the high(More)
Steady improvements in storage capacities and CPU clock speeds intensify the performance bottleneck at the I/O subsystem of modern computers. Caching data can efficiently short circuit costly delays associated with disk accesses. Recent studies have shown that disk I/O performance gains provided by a cache buffer do not scale with cache size. Therefore, new(More)
An increasing number of commodity clusters are connected to each other by public networks, which have become a potential threat to security sensitive parallel applications running on the clusters. To address this security issue, we developed a Message Passing Interface (MPI) implementation to preserve confidentiality of messages communicated among nodes of(More)
Most researches of Solid State Drives (SSDs) architectures rely on Flash Translation Layer (FTL) algorithms and wear-leveling; however, internal parallelism in Solid State Drives has not been well explored. In this research, we proposed a new strategy to improve SSD write performance by enhancing internal parallelism inside SSDs. A SDRAM buffer is added in(More)
Recognizing that power and cooling cost for data centers are increasing, we address in this study the thermal impact of storage systems. In the first phase of this work, we generate the thermal profile of a storage server containing three hard disks. The profiling results show that disks have comparable thermal impacts as processing and networking elements(More)
We develop a mathematical model - MREED - to quantitatively evaluate the failure rate of energy-efficient parallel storage systems. The Power-Aware Redundant Array of Inexpensive Disk (PARAID) aims to reduce energy use of commodity server-class disks without specialized hardware. The goal of PARAID is to skewed striping pattern to adapt to the system load(More)
Since security is of critical importance for modern storage systems, it is imperative to protect stored data from being tampered or disclosed. Although an increasing number of secure storage systems have been developed, there is no way to dynamically choose security services to meet disk requests' flexible security requirements. Furthermore, existing(More)
There is a growing demand for large-scale distributed storage systems to support resource sharing and fault tolerance. Although heterogeneity issues of distributed systems have been widely investigated, little attention has yet been paid to security solutions designed for distributed storage systems with heterogeneous vulnerabilities. This fact motivates us(More)