Mohammed G. Khatib

Learn More
Because of its small form factor, high capacity, and expected low cost, MEMS-based storage is a suitable storage technology for mobile systems. However, flash memory may outperform MEMS-based storage in terms of performance, and energy-efficiency. The problem is that MEMS-based storage devices have a large number (i.e., thousands) of heads, and to deliver(More)
— In computer systems, the storage hierarchy, composed of a disk drive and a DRAM, is responsible for a large portion of the total energy consumed. This work studies the energy merit of interposing flash memory as a streaming buffer between the disk drive and the DRAM. Doing so, we extend the spin-off period of the disk drive and cut down on the DRAM(More)
Because of its small form factor, high capacity, and expected low cost, MEMS-based storage is a suitable storage technology for mobile systems. MEMS-based storage devices should also be energy efficient for deployment in mobile systems. The problem is that MEMS-based storage devices are mechanical, and thus consume a large amount of energy when idle.(More)
The disk and the DRAM in a typical mobile system consume a significant fraction (up to 30%) of the total system energy. To save on storage energy, the DRAM should be small and the disk should be spun down for long periods of time. We show that this can be achieved for predominantly streaming work-loads by connecting the disk to the DRAM via a large(More)
Phase Change Memory (PCM) is emerging as an attractive alternative to Dynamic Random Access Memory (DRAM) in building data-intensive computing systems. PCM offers read/write performance asymmetry that makes it necessary to revisit the design of in-memory applications. In this paper, we focus on in-memory hash tables, a family of data structures with wide(More)
Probes (read/write heads) in a MEMS storage device are susceptible to wear. We study probe wear, and analyze the causes of uneven wear. We show that under real-world workloads some probes can wear one order of magnitude faster than others. This premature expiry has severe consequences for reliability, timing performance, energy efficiency, and lifetime.(More)
—Emerging nanotechnology-based systems encounter new non-functional requirements. This work addresses MEMS storage, an emerging technology that promises ultrahigh density and energy-efficient storage devices. We study the buffering requirement of MEMS storage in streaming applications. We show that capacity and lifetime of a MEMS device dictate the buffer(More)
An emerging storage technology, called MEMS-based storage, promises nonvolatile storage devices with ultrahigh density, high rigidity, a small form factor, and low cost. For these reasons, MEMS-based storage devices are suitable for battery-powered mobile systems such as PDAs. For deployment in such systems, MEMS-based storage devices must consume little(More)