Learn More
Opioids mediate their analgesic effects by activating mu-opioid receptors (MOR) not only within the central nervous system but also on peripheral sensory neurons. The peripheral analgesic effects of opioids are best described under inflammatory conditions (e.g., arthritis). The present study investigated the effects of inflammation on MOR binding and(More)
S.c. painful inflammation leads to an increase in axonal transport of opioid receptors from dorsal root ganglia (DRG) toward the periphery, thus causing a higher receptor density and enhanced opioid analgesia at the injured site. To examine whether this increase is related to transcription, the mRNA of Delta- (DOR) and mu-opioid receptor (MOR) in lumbar DRG(More)
Nerve growth factor (NGF) regulates sensory neuron phenotype by elevated expression of ion channels and receptors contributing to pain. Peripheral opioid antinociception is dependent on sensory neuron mu opioid receptor (MOR) expression, coupling and efficacy. This study investigates the role of NGF in the upregulation of the number and efficacy of sensory(More)
Painful diabetic neuropathy is poorly controlled by analgesics and requires high doses of opioids, triggering side effects and reducing patient quality of life. This study investigated whether enhanced Rab7-mediated lysosomal targeting of peripheral sensory neuron μ-opioid receptors (MORs) is responsible for diminished opioid responsiveness in rats with(More)
Endomorphins (EMs) are endogenous selective mu-opioid receptor agonists. Their role in inflammatory pain has not been fully elucidated. Here we examine peripheral antinociception elicited by exogenously applied EM-1 and EM-2 and the contribution of EM-containing leukocytes to stress- and corticotropin-releasing factor (CRF)-induced antinociception. To this(More)
UNLABELLED This study investigated putative mechanisms of impaired spinal opioid antinociception such as a downregulation of mu-opioid receptor (MOR) number, coupling, and efficacy in rats with advanced (12 weeks) streptozotocin (STZ)-induced diabetes. Intravenous injection of STZ (45 mg/kg) in Wistar rats led to selective degeneration of insulin-producing(More)
Peripheral analgesic effects of opioids are pronounced under inflammatory conditions, e.g., arthritis; however, little is known about adaptive changes of micro opioid receptor binding and G protein coupling in the peripheral versus central nervous system. The present study investigated the effects of inflammation on mu opioid receptor (MOP receptor) binding(More)
Painful diabetic neuropathy is associated with impaired opioid analgesia; however, the precise mechanism in sensory neurons remains unclear. This study aimed to identify putative mechanisms involved in modified opioid responsiveness during early streptozotocin-induced diabetes in rats. In this study, we demonstrate that in diabetic animals, impaired(More)
BACKGROUND Sensory neuron opioid receptors are targets for spinal, epidural, and peripheral opioid application. Although local nerve growth factor (NGF) has been identified as a mediator of sensory neuron μ-opioid receptor (MOR) up-regulation, the signaling pathways involved have not been yet identified. METHODS Wistar rats were treated with intraplantar(More)
Recently, there is increasing interest in the role of peripheral mineralocorticoid receptors (MR) to modulate pain, but their localization in neurons and glia of the periphery and their distinct involvement in pain control remains elusive. In naive Wistar rats our double immunofluorescence confocal microscopy of the spinal cord, dorsal root ganglia, sciatic(More)