Mohammadali Shirazi

  • Citations Per Year
Learn More
Crash data can often be characterized by over-dispersion, heavy (long) tail and many observations with the value zero. Over the last few years, a small number of researchers have started developing and applying novel and innovative multi-parameter models to analyze such data. These multi-parameter models have been proposed for overcoming the limitations of(More)
Safety analysts usually use post-modeling methods, such as the Goodness-of-Fit statistics or the Likelihood Ratio Test, to decide between two or more competitive distributions or models. Such metrics require all competitive distributions to be fitted to the data before any comparisons can be accomplished. Given the continuous growth in introducing new(More)
Severity distribution functions (SDFs) are used in highway safety to estimate the severity of crashes and conduct different types of safety evaluations and analyses. Developing a new SDF is a difficult task and demands significant time and resources. To simplify the process, the Highway Safety Manual (HSM) has started to document SDF models for different(More)
The Highway Safety Manual (HSM) prediction models are fitted and validated based on crash data collected from a selected number of states in the United States. Therefore, for a jurisdiction to be able to fully benefit from applying these models, it is necessary to calibrate or recalibrate them to local conditions. The first edition of the HSM recommends(More)
  • 1