Mohammad Y. Abualhoul

Learn More
The major benefits of driving vehicles in controlled close formations such as platoons are that of increasing traffic fluidity and reducing air pollution. While Vehicle-toVehicle (V2V) communications is requisite for platooning stability, the existing radio communications technologies (e.g., the IEEE 802.11p) suffer from poor performance in highly dense(More)
HAL is a multidisciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt età la diffusion(More)
— The major benefits of driving vehicles in controlled close formations such as platoons are that of increasing traffic fluidity and reducing air pollution. While vehicle-to-vehicle (V2V) communications is requisite for platooning stability, the existing radio communications technologies (e.g., the IEEE 802.11p) suffer from poor performance in highly dense(More)
In this paper, we study a use of Visible Light Communication (VLC) technology for a platoon of autonomous vehicles. We present a low-cost, low-latency and simple outdoor VLC prototype, which can be installed as a vehicular tail-lighting system. The architecture of our VLC system is introduced, followed by performance evaluation with an especial attention on(More)
Visible Light Communication (VLC) is a new emerging technology that is being proposed as a reliable and supportive choice for short range communications in ITS. On the same context, Laser Range Finders (LRF) sensors are used for the vehicular environment perception. Compared to VLC, LRF can provide more coverage range and extended viewing angle. To take the(More)
  • 1