Mohammad Rastgaar

Learn More
This paper reports quantification of multivariable static ankle mechanical impedance when muscles were active. Repetitive measurements using a highly backdrivable therapeutic robot combined with robust function approximation methods enabled reliable characterization of the nonlinear torque-angle relation at the ankle in two coupled degrees of freedom(More)
Orthogonal eigenstructure control is a novel active control method for vibration suppression in multi-input multi-output linear systems. This method is based on finding an output feedback control gain matrix in such a way that the closed-loop eigenvectors are almost orthogonal to the open-loop ones. Singular value decomposition is used to find the matrix,(More)
This article compares the three-dimensional angles of the ankle during step turn and straight walking. We used an infrared camera system (Qualisys Oqus ®) to track the trajectories and angles of the foot and leg at different stages of the gait. The range of motion (ROM) of the ankle during stance periods was estimated for both straight step and step turn.(More)
The ankle joint of currently available powered prostheses is capable of controlling one degree of freedom (DOF), focusing on improved mobility in the sagittal plane. To increase agility, the requirements of turning in prosthesis design need to be considered. Ankle kinematics and kinetics were studied during sidestep cutting and straight walking. There were(More)
This article compares stochastic estimates of human ankle mechanical impedance when ankle muscles were fully relaxed and co-contracting antagonistically. We employed Anklebot, a rehabilitation robot for the ankle to provide torque perturbations. Surface electromyography (EMG) was used to monitor muscle activation levels and these EMG signals were displayed(More)
This paper introduces a finite state machine to select between impedance and admittance control for a powered ankle-foot prosthesis controllable in both Dorsiflexion-Plantarflexion (DP) and Inversion-Eversion (IE). Strain gauges are installed on the prosthesis' foot to measure the strain caused by ground reaction forces, which are correlated to the external(More)
This paper provides a state-of-the-art review of eigenstructure assignment methods for vibration cancellation. Eigen-structure assignment techniques have been widely used during the past three decades for vibration suppression in structures, especially in large space structures. These methods work similar to mode localization in which global vibrations are(More)
This paper describes the design of an ankle-foot robotic prosthesis controllable in the sagittal and frontal planes. The prosthesis was designed to meet the mechanical characteristics of the human ankle including power, range of motion, and weight. To transfer the power from the motors and gearboxes to the ankle-foot mechanism, a Bowden cable system was(More)