Mohammad Maroufi

Learn More
We investigated the effects of microamperage electrical stimulation (MES) on the healing of skin incision in rabbits. Thirty male adult rabbits were randomly divided into sham-treated and experimental groups. Each group was divided into three subgroups, based on the duration of experiment (4, 7, and 15 days). A full-thickness incision was made on the skin(More)
There is a need for 2 DOF scanners in a variety of applications in nanotechnology, particularly in the Atomic Force Microscope (AFM). An ideal AFM stage should have a high resonance frequency, low cross coupling between the two perpendicular axes of motion and be capable of moving over a large range in either direction. To achieve these specifications,(More)
— We demonstrate the application of internal model control for accurate tracking of spiral scan trajectories, where the reference signals are orthogonal sinusoids whose amplitudes linearly vary with time. The plant is a 2-D microelectromechan-ical system nanopositioner equipped with in situ differential electrothermal sensors and electrostatic actuators.(More)
This paper presents a novel application of internal model control (IMC) for high-precision tracking of spiral reference signals generated by single-tone sine waves. In contrast to the existing spiral tracking control methods, the IMC approach provides zero steady-state tracking error for linear-time-invariant plants. An application of the proposed method is(More)
A 2 degree of freedom microelectromechanical system (MEMS) nanopositioner is presented in this paper. The nanopositioner is fabricated using a standard silicon-on-insulator process. The device demonstrates a bidirectional displacement in two orthogonal directions. As the displacement sensing mechanism, bulk piezoresistivity of tilted clamped-guided beams is(More)
This paper addresses a new position transducer for nanopositioners fabricated through a standard micro-electromechanical systems (MEMS) process. The sensor works based on bulk piezoresistivity of a pair of single-crystal silicon beams, which suspend a nanopositioner stage. The beams are deliberately angled to experience opposite axial forces during the(More)
  • 1