Mohammad Khavari Tavana

Learn More
—The interaction between fault tolerance and energy consumption is an interesting avenue in the realm of designing embedded systems. In this paper, a scheme for reducing energy consumption in conventional standby-sparing systems is introduced. In the proposed method, the primary unit exploits dynamic voltage scaling (DVS) and dynamic power management (DPM)(More)
Future computing platforms will need to be flexible, scalable, and power-conservative, while saving size, weight, energy, etc. Heterogeneous architecture can address these challenges by allowing each application to run on a core that matches resource needs more closely than a one-size-fits-all core. Dynamic heterogeneous architectures can extend these(More)
The variability of deep-submicron technologies creates systems with asymmetric cores from a frequency and leakage power viewpoint, which makes an opportunity for performance-power optimization. In particular, process variation can transform a homogeneous many-core platform into a heterogeneous system where the task mapping is NP-hard problem. In this paper,(More)
Heterogeneous architectures have emerged as a promising solution to enhance energy-efficiency by allowing each application to run on a core that matches resource needs more closely than a one-size-fits-all core. In this paper, an ElasticCore platform is described where core resources along with the operating voltage and frequency settings are scaled to(More)
High fabrication cost per bit and thermal issues are the main reasons that prevent architects from using 3D-DRAM alone as the main memory. In this paper we address this issue by proposing a heterogeneous memory system that combines a DDRx DRAM with an emerging 3D hybrid memory cube (HMC) technology. Bandwidth and temperature management are the challenging(More)
Standby-sparing is one of the common techniques in order to design fault-tolerant safety-critical systems where the high level of reliability is needed. Recently, the minimization of energy consumption in embedded systems has attracted a lot of concerns. Simultaneous considering of high reliability and low energy consumption by DVS is a challenging problem(More)
A dynamic power management system for homogeneous chip multi-processors (CMP) is proposed. Each core of the CMP includes on chip DC-DC switching buck converters that are interconnected through a switch network. The peak current rating of the buck converter is selected to meet only the average current demand of the load circuit. A real-time load balancing(More)