Mohammad Izadifar

  • Citations Per Year
Learn More
Observing cavitation bubbles deep within tissue is very difficult. The development of a method for probing cavitation, irrespective of its location in tissues, would improve the efficiency and application of ultrasound in the clinic. A synchrotron x-ray imaging technique, which is capable of detecting cavitation bubbles induced in water by a sonochemistry(More)
Nano-particulate delivery systems have increasingly been playing important roles in cardiovascular tissue engineering. Properties of nanoparticles (e.g. size, polydispersity, loading capacity, zeta potential, morphology) are essential to system functions. Notably, these characteristics are regulated by fabrication variables, but in a complicated manner.(More)
Determination of optimum feed forward artificial neural network (ANN) design and training parameters is an extremely important mission. It is a challenging and daunting task to find an ANN design, which is effective and accurate. This paper presents a new methodology for the optimization of ANN parameters as it introduces a process of training ANN which is(More)
Development of smart bioactive scaffolds is of importance in tissue engineering, where cell proliferation, differentiation and migration within scaffolds can be regulated by the interactions between cells and scaffold through the use of growth factors (GFs) and extra cellular matrix peptides. One challenge in this area is to spatiotemporally control the(More)
AIM Cardiac tissue engineering aims to develop engineered constructs for myocardial infarction repair, where a challenge is the control of growth factor (GF) sequential release. Herein, bilayer polymeric nanoparticles composed of a GF-encapsulating core surrounded by rate-regulating shell were developed for sequential GF release. MATERIALS & METHODS(More)
Biofabrication of cell supportive cardiac patches that can be directly implanted on myocardial infarct is a potential solution for myocardial infarction repair. Ideally, cardiac patches should be able to mimic myocardium extracellular matrix for rapid integration with the host tissue, raising the need to develop cardiac constructs with complex features. In(More)
Three-dimensional (3D)-bioprinting techniques may be used to modulate electrical/mechanical properties and porosity of hydrogel constructs for fabrication of suitable cardiac implants. Notably, characterization of these properties after implantation remains a challenge, raising the need for the development of novel quantitative imaging techniques for(More)
Three-dimensional (3D) printing is an emerging technology for the fabrication of scaffolds to repair/replace damaged tissue/organs in tissue engineering. This paper presents our study on 3D printed alginate scaffolds treated with phosphate buffered saline (PBS) and polyethyleneimine (PEI) coating and their impacts on the surface morphology and cellular(More)
AIM Temporal control of growth-factor release from nanoparticles is essential to many tissue engineering applications, yet remains a challenge due to its complicated behavior. The interplay between nanoparticle characteristics and release mechanisms can be captured using computational models. This study aims to develop two novel models to represent the(More)
Local volume averaging method and local mass (drug) equilibrium were used for developing a mathematical model for transient drug transport and elimination in the liver. Taking into account the liver porosity and tortuosity, physio-chemical properties of the drug, the drug effective diffusivity, dispersion, convection, local plasma-hepatocyte equilibrium and(More)