Mohammad Hossein Arbab-zavar

Learn More
An electrochemical hydride generation (ECHG) technique was developed to improve the determination of thallium by atomic spectrometry. The technique is based on the catholyte variation system for production of thallium hydride. Using Pb-Sn alloy as cathode, a transient peak shaped signal was achieved and its height, the maximum absorbance value, was taken as(More)
Thallium (III) ion-imprinted polymer (IIP) particles were synthesized by preparing the ternary complex of thallium (III) ions with 5,7-dichloroquinoline-8-ol (DCQ) and 4-vinylpyridine (VP). Thermal copolymerization with methyl methacrylate (functional monomer, MMA) and ethyleneglycoldimethacrylate (cross-linking monomer, EGDMA) was then performed in the(More)
Vortex-assisted surfactant-enhanced emulsification microextraction based on solidification of floating organic drop (VASEME-SFO) was used for preconcentration and speciation of antimony (ΙΙΙ, V) followed by electrothermal atomic absorption spectrometry (ETAAS). In this procedure, Triton X-114 was used as emulsifier and 1-undecanol was used as extraction(More)
A simple single drop liquid-phase microextraction (SDME) technique, combined with electrothermal atomic absorption spectroscopy (ETAAS) is developed both to preconcentrate and determine thallium (I) ions in aqueous solutions. The ions were transferred from 10.0 ml of aqueous sample (donor phase) containing 0.5 ml of 1% picric acid as the ion-pair agent into(More)
A simple microextraction method based on solidification of a floating organic drop (SFOD) was developed for preconcentration of lead prior to its determination by electrothermal atomic absorption spectrometry (ETAAS). Ammonium pyrolidinedithiocarbamate (APDC) was used as complexing agent, and the formed complex was extracted into a 20 μL of 1-undecanol. The(More)
Trace amounts of beryllium has been determined by spectrofluorimetric method that used morin as fluorimetric reagent. Beryllium gives a highly fluorescent complex with morin. The excitation wavelength of morin and Be-morin complex were 410 and 430. The fluorescence spectra of morin and Be-morin complex were overlaped in excitation wavelength of 430 nm. A(More)
Electrochemical hydride generation (EcHG) as a sample introduction system for determination of zinc was developed. It was directly coupled to an electrically heated quartz tube atomizer (QTA) atomic absorption spectrometry (AAS) system. The hydride generator is a laboratory-made semi-batch electrolytic cell that consists of a lead-tin alloy cathode and a(More)
A novel electrochemical hydride generation (ECHG) system working in flow-injection (FI) mode was developed for determination of cadmium coupled to an electrically heated quartz tube atomizer (QTA) by atomic absorption spectrometry (AAS). A Plackett-Burman experimental design for screening has been used to evaluate the influence of several variables on the(More)
The mechanistic aspects of a novel methodology for the electrochemical hydride generation (EcHG) of cadmium, entitled as the catholyte variation, have been studied. The hydrogen overvoltage of different cathode materials was determined in dilute electrolyte. The lead-tin alloy used as the cathode material for the EcHG of Cd had the highest hydrogen(More)
A simple method was developed for speciation and spectrophotometric determination of inorganic As(III) and As(V) using an electrochemical hydride generation technique. For speciation of As(III) and As(V), a graphite rod was used as cathode to reduce As(III) to AsH(3), the rod was then replaced with a tin-lead alloy wire for reducing As(V) to AsH(3). The(More)