Mohammad H. Mahoor

Learn More
Access to well-labeled recordings of facial expression is critical to progress in automated facial expression recognition. With few exceptions, publicly available databases are limited to posed facial behavior that can differ markedly in conformation, intensity, and timing from what occurs spontaneously. To meet the need for publicly available corpora of(More)
Automated facial measurement using computer vision has the potential to objectively document continuous changes in behavior. To examine emotional expression and communication, we used automated measurements to quantify smile strength, eye constriction, and mouth opening in two six-month-old/mother dyads who each engaged in a face-to-face interaction.(More)
This paper presents a framework to automatically measure the intensity of naturally occurring facial actions. Naturalistic expressions are non-posed spontaneous actions. The facial action coding system (FACS) is the gold standard technique for describing facial expressions, which are parsed as comprehensive, nonoverlapping action units (Aus). AUs have(More)
Automated Facial Expression Recognition (FER) has remained a challenging and interesting problem in computer vision. Despite efforts made in developing various methods for FER, existing approaches lack generalizability when applied to unseen images or those that are captured in wild setting (i.e. the results are not significant). Most of the existing(More)
In this paper we present an approach for 3D face recognition from range data based on the principal curvature, k<sub>max</sub>, and Hausdorff distance. We use the principal curvature, k<sub>max</sub>, to represent the face image as a 3D binary image called ridge image. The ridge image shows the locations of the ridge lines around the important facial(More)
This paper presents a novel framework for recognition of facial action unit (AU) combinations by viewing the classification as a sparse representation problem. Based on this framework, we represent a facial image exhibiting the combination of AUs as a sparse linear combination of basis constituting an overcomplete dictionary. We build an overcomplete(More)
This paper presents a novel approach for combining a set of registered images into a composite mosaic with no visible seams and minimal texture distortion. To promote execution speed in building large area mosaics, the mosaic space is divided into disjoint regions of image intersection based on a geometric criterion. Pair-wise image blending is performed(More)