Learn More
Leishmaniasis is a neglected disease transmitted in many tropical and sub-tropical countries, with few studies devoted to its treatment. In this work, the activities of two antileishmanial compound classes were modeled using Dragon descriptors, and multiple linear (MLR) and support vector machines (SVM) as linear and nonlinear regression methods,(More)
Similarity assessment of complex chromatographic profiles of herbal medicinal products is important as a potential tool for their identification. Mathematical similarity parameters have the advantage to be more reliable than visual similarity evaluations of often subtle differences between the fingerprint profiles. In this paper, different similarity(More)
Few variables were selected from a pool of calculated Dragon descriptors through three different feature selection methods, namely genetic algorithm (GA), successive projections algorithm (SPA), and fuzzy rough set ant colony optimization (fuzzy rough set ACO). Each set of selected descriptors was regressed against the bioactivities of a series of glycogen(More)
In order to minimize the high attrition rate that usually characterizes drug research and development projects, current medicinal chemists aim to characterize both pharmacological and ADME profiles at the beginning of drug R&D initiatives. Thus, the development of ADME High-Throughput Screening in vitro and in silico ADME models has become an important(More)
The activities of a series of HIV reverse transcriptase inhibitor TIBO derivatives were recently modeled by using genetic function approximation (GFA) and artificial neural networks (ANN) on topological, structural, electronic, spatial and physicochemical descriptors. The prediction results were found to be superior to those previously established. In the(More)
A quantitative structure-activity relationship (QSAR) relates quantitative chemical structure attributes (molecular descriptors) to a biological activity. QSAR studies have now become attractive in drug discovery and development because their application can save substantial time and human resources. Several parameters are important in the prediction(More)
Four molecular descriptors were selected from a pool of variables using genetic algorithm, and then used to built a QSAR model for a series of 1-(azacyclyl)-3-arylsulfonyl-1H-pyrrolo[2,3-b]pyridines as 5-HT(6) receptor agonists or antagonists, useful for the treatment of central nervous system disorders. Simple multiple linear regression (MLR) and a(More)
Undesirable toxicity is still a major block in the drug discovery process. Obviously, capable techniques that identify poor effects at a very early stage of product development and provide reasonable toxicity estimates for the huge number of untested compounds are needed. In silico techniques are very useful for this purpose, because of their advantage in(More)
BACKGROUND Fatigue is one of the common complaints of multiple sclerosis (MS) patients, and its treatment is relatively unclear. Ginseng is one of the herbal medicines possessing antifatigue properties, and its administration in MS for such a purpose has been scarcely evaluated. The purpose of this study was to evaluate the efficacy and safety of ginseng in(More)
The boiling points of a set of 58 aliphatic alcohols have been modeled through an image-based approach, in which descriptors are pixels (binaries) of 2D chemical structures. While some simple descriptors, such as molecular weight, do not account for some structural influences (e.g., in chain and position isomerism) on the studied property, the MIA-QSPR(More)