Mohammad Fatehi

Learn More
The cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channel is gated by intracellular factors; however, conformational changes in the channel pore associated with channel activation have not been identified. We have used patch clamp recording to investigate the state-dependent accessibility of substituted cysteine residues in the CFTR(More)
Pancreatic β-cell ATP-sensitive K(+) (K(ATP)) channels are composed of Kir6.2 and SUR1 subunits encoded by the KCNJ11 and ABCC8 genes, respectively. Although rare monogenic activating mutations in these genes cause overt neonatal diabetes, the common variants E23K (KCNJ11) and S1369A (ABCC8) form a tightly heritable haplotype that is associated with an(More)
The avidin-biotinylated peroxidase complex (ABC) method was used to detect binding of 14 lectins in tissue, cultured cells, and nitrocellulose blots. When applied to frozen sections of canine cerebral cortex and pituitary and evaluated by light microscopy, these lectins produced distinct staining patterns as determined by their individual carbohydrate(More)
Previous studies have shown that homologous phospholipases A2 (PLA2) (Pa-3, Pa-9C, Pa-10F and Pa-11) from the venom of the Australian king brown snake, Pseudechis australis, significantly reduce the resting membrane potentials and quantal contents of endplate potentials recorded from endplate regions of mouse triangularis sterni nerve-muscle preparations.(More)
Single channel and macroscopic current recording was used to investigate block of the cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channel pore by the permeant anion Au(CN)2(-). Block was 1-2 orders of magnitude stronger when Au(CN)2(-) was added to the intracellular versus the extracellular solution, depending on membrane potential. A(More)
The effects of Pa-1G, a phospholipase A(2) (PLA(2)) from the venom of the Australian king brown snake (Pseudechis australis) were determined on the release of acetylcholine, muscle resting membrane potential and motor nerve terminal action potential at mouse neuromuscular junction. Intracellular recording from endplate regions of mouse triangularis sterni(More)
Previous studies showed that toxic phospholipases A2 (Pa-8 and Pa-10F) from the venom of Pseudechis australis, the Australian king brown snake, reduced acetylcholine release at mouse neuromuscular junctions and depressed motor nerve terminal action potentials [Fatehi et al. (1994a), Toxicon 32, 1559-1572], and it was postulated that these toxins induced(More)
The effects on vertebrate neuromuscular function of five homologous phospholipases A2 (PLA2) (Pa-3, Pa-8, Pa-9C, Pa-10F and Pa-12B) from the venom of the Australian king brown snake, Pseudechis australis, were determined. These isoenzymes (0.2-1.6 microM) reduced, with different potencies, responses of chick biventer cervicis preparations to nerve(More)