Mohammad F Islam

Learn More
The nuclear lamina is a network of structural filaments, the A and B type lamins, located at the nuclear envelope and throughout the nucleus. Lamin filaments provide the nucleus with mechanical stability and support many basic activities, including gene regulation. Mutations in LMNA, the gene encoding A type lamins, cause numerous human diseases, including(More)
Enzymatic biofuel cells (EBFCs) utilize enzymes to convert chemical energy present in renewable biofuels into electrical energy and have shown much promise in the continuous powering of implantable devices. Currently, however, EBFCs are greatly limited in terms of power and operational stability with a majority of reported improvements requiring the(More)
The ability of globular actin to form filaments and higher-order network structures of the cytoskeleton is essential for cells to maintain their shape and perform essential functions such as force generation, motility, and division. Alterations of actin structures can dramatically change a cell's ability to function. We found that purified and dispersed(More)
Lightweight materials that are both highly compressible and resilient under large cyclic strains can be used in a variety of applications. Carbon nanotubes offer a combination of elasticity, mechanical resilience and low density, and these properties have been exploited in nanotube-based foams and aerogels. However, all nanotube-based foams and aerogels(More)
The thermal, electrical, and thermoelectric properties of aerogels of single-walled carbon nanotubes are characterized. Their ultralow density enables the transport properties of the junctions to be distinguished from those of the nanotubes themselves. Junction thermal and electrical conductances are found to be orders of magnitude larger than those found(More)
Emerging applications for electrochemical energy storage require devices that not only possess high power and energy, but also are capable of withstanding mechanical deformation without degradation of performance. To this end, we have constructed electric double layer capacitors (EDLCs), also referred to as supercapacitors, using thick, ultracompressible(More)
Enzymatic biofuel cells (EBFCs) are capable of generating electricity from physiologically present fuels making them promising power sources for the future of implantable devices. The potential application of such systems is limited, however, by inefficient current generation. Polymer-based protein engineering (PBPE) offers a unique method to tailor enzyme(More)
BACKGROUND Carbon nanotubes are increasingly being tested for use in cellular applications. Determining the mode of entry is essential to control and regulate specific interactions with cells, to understand toxicological effects of nanotubes, and to develop nanotube-based cellular technologies. We investigated cellular uptake of Pluronic(More)
Single-wall carbon nanotubes (SWCNTs) possess many unique, inherent properties that make them attractive materials for application in medical and biological technologies. Development of concentrated SWCNT dispersions of isolated nanotubes that retain SWCNTs' inherent properties with minimal negative cellular effects is essential to fully realize the(More)
The excellent properties of transistors, wires and sensors made from single-walled carbon nanotubes (SWNTs) make them promising candidates for use in advanced nanoelectronic systems. Gas-phase growth procedures such as the high-pressure decomposition of carbon monoxide (HiPCO) method yield large quantities of small-diameter semiconducting SWNTs, which are(More)