Mohammad E. Khosroshahi

Learn More
The effects of neodymium:yttrium–aluminium–garnet (Nd:YAG) laser and silicon carbide (SiC) paper on the surface micro-topography of titanium-6 aluminium-4 vanadium (Ti6Al4V) alloy were examined in relation to the response of bone cells. The study was performed in three distinct stages: (1) after surface treatment of samples by laser and SiC paper, the(More)
Gold nanoshells (GNs) are new materials that have an optical response dictated by the plasmon resonance. The wavelength at which the resonance occurs depends on the core and shell sizes. The purposes of this study were to use the combination of indocyanine green (ICG) and different concentration of gold nanoshells for skin tissue soldering and also to(More)
The effect of the 488-nm wavelength of argon laser at different power densities and irradiation times on the degree of conversion (DC), temperature rise, water sorption, solubility, flexural strength, flexural modulus, and microhardness of bisphenole A glycol dimethacrylate and triethylen glycol dimethacrylate with a mass ratio of 75:25 was studied.(More)
We described the synthesis of Au coated SiO2 nanoshells linked with NH2 biomolecular ligands using a simple wet chemical method with a particular application for laser tissue soldering. Tunable nanoshells were prepared by using different gold colloidal concentrations. The nanoshells are characterized by UV-vis spectroscopy, FTIR, XRD and AFM. The FTIR(More)
Laser tissue soldering based on protein as biological glues and other compounds can provide greater bond strength and less collateral damage. Endogenous and exogenous materials such as indocyanine green (ICG) are often added to solders to enhance light absorption. The purpose of this in vitro study was to examine the impact of different parameters of laser(More)
Gold-coated silica core nanoparticles have an optical response dictated by the plasmon resonance (PR). The wavelength at which the resonance occurs depends on the core and shell size, allowing nanoshells to be tailored for particular applications. The purpose of this study is to synthesize and use different concentrations of gold nanoshells as exogenous(More)
This paper proposes a generalized method for optical and thermal modeling of synthesized magneto-optical nanoshells (MNSs) for biomedical applications. Superparamagnetic magnetite nanoparticles with diameter of 9.5 ± 1.4 nm are fabricated using co-precipitation method and subsequently covered by a thin layer of gold to obtain 15.8 ± 3.5 nm MNSs. In this(More)
Laser Doppler Flowmetery (LDF) is a noninvasive method to assess tissue blood flow. Previously published works have proposed a mathematical model for LDF and showed that there is a relationship between first moment of power spectrum and the velocity of moving blood cells (MBC’s). Also researchers have studied this method by mathematical analyses in various(More)
In this study, cationic nanoparticles (NPs) were prepared by coating chitosan (CS) on the surface of PLGA NPs. To our knowledge most of the work in the field of drug delivery systems using lasers has been performed using short pulses with micron and submicron durations. We carried out an experiment using superlong PLS-R (10 ms) and CW CO₂ laser modes on(More)