#### Filter Results:

#### Publication Year

2012

2016

#### Publication Type

#### Co-author

#### Key Phrase

#### Publication Venue

Learn More

This paper presents the current state-of-the-art of massive antenna array architectures with significant front-end hardware savings, as an enabler for future small and powerful cell nodes that will be able to carry massive MIMO technology. Radio frequency (RF) hardware architectures with a single power amplifier are reviewed, compared, and found superior to… (More)

—We propose a new hardware architecture for cost-and size-effective implementation of massive MIMO transmitters based on load modulation that is fully compatible with standard receiver architectures. With load modulation, a massive MIMO transmitter can be driven by a single power amplifier operating at constant envelope. The various data streams are… (More)

We extend the result by Tse and Verdú on the optimum asymptotic multiuser efficiency of randomly spread CDMA with Binary Phase Shift Keying (BPSK) input. Random Gaussian and random binary antipodal spreading are considered. We obtain the optimum asymptotic multiuser efficiency of a K-user system with spreading gain N when K and N → ∞ and the loading factor,… (More)

—We consider the total capacity of a Gaussian multiple-access MIMO channel with a linear array of R receive antennas and T distributed transmit antennas. If the spatial distribution of transmit antennas weighed by their path loss and marginalized to a sphere around the receive array is proportional to the ratio of receive antenna directivity to transmit… (More)

—We derive some bounds on the Optimum Asymptotic Multiuser Efficiency (OAME) of randomly spread CDMA as extensions of the result by Tse and Verdú. To this end, random Gaussian and random binary antipodal spreading are considered. Furthermore, the input signal is assumed to be Binary Phase Shift Keying (BPSK). It is shown that in a CDMA system with K-user… (More)