Mohammad A. Tabatabai

Learn More
 The impacts of crop rotations and N fertilization on different pools of arylsulfatase activity (total, intracellular, and extracellular) were studied in soils of two long-term field experiments in Iowa to assess the contibution of the microbial biomass to the activity of this enzyme. Surface-soil samples were taken in 1996 and 1997 in corn, soybeans, oats,(More)
Laboratory experiments were conducted to evaluate organic C mineralization of various organic materials added to soils. A soil sample was mixed with organic material to approximate a field application of 9 g organic C kg-1 soil (0.9% or 50 Mg ha-1). The organic materials used were four crop residues [corn (Zea mays L.), soybean (Glycine max L. Merr.),(More)
 This study assessed the effect of eight lime application rates, with four field replications, on the activities of 14 enzymes involved in C, N, P, and S cycling in soils. The enzymes were assayed at their optimal pH values. The soil used was a Kenyon loam located at the Northeast Research Center in Nashua, Iowa. Lime was applied in 1984 at rates ranging(More)
 The impacts of crop rotations and N fertilization on different pools of urease activity were studied in soils of two long-term field experiments in Iowa; at the Northeast Research Center (NERC) and the Clarion-Webster Research Center (CWRC). Surface soil samples (0–15 cm) were taken in 1996 and 1997 in corn, soybeans, oats, or meadow (alfalfa) plots that(More)
 The impacts of crop rotations and N fertilization on microbial biomass C (Cmic) and N (Nmic) were studied in soils of two long-term field experiments initiated in 1978 at the Northeast Research Center (NERC) and in 1954 at the Clarion-Webster Research Center (CWRC), both in Iowa. Surface soil samples were taken in 1996 and 1997 from plots of corn (Zea mays(More)
This study was carried out to investigate the effect of tillage and residue management on activities of phosphatases (acid phosphatase, alkaline phosphatase, phosphodiesterase, and inorganic pyrophosphatase) and arylsulfatase. The land treatments included three tillage systems (no-till, chisel plow, and moldboard plow) in combination with corn residue(More)
The purpose of this study was to differentiate between biotic and abiontic fractions of four important hydrolases involved in C cycling in soils. Therefore, ten different surface soils, which represent a wide range of physico-chemical properties were fumigated with chloroform for 24 h. The activities of α- and β-glucosidases and α- and β-galactosidases were(More)
A simple, precise, and sensitive method to assay l-asparaginase (l-asparagine amidohydrolase, EC 3.5.1.1) activity in soils is described. This method use steam distillation to determine the NH inf4 sup+ produced by l-asparaginase activity when soil is incubated with buffered (0.1 M THAM, pH 10) l-asparagine solution and toluene at 30°C for 2 h. The(More)
 Studies were conducted to evaluate the relationships among different active N pools of organic matter in soils at two long-term cropping systems in Iowa. Results indicated that multi-cropping systems, particularly meadow-based systems, enhanced bioactivities of soils. Mono-cropping systems, particularly soybean, reduced soil microbial biomass and enzyme(More)
This study was undertaken to investigate the long-term influence of lime application and tillage systems (no-till, ridge-till and chisel plow) on soil microbial biomass C (Cmic) and N (Nmic) and the activities of glycosidases (α- and β-glucosidases, α- and β-galactosidases and β-glucosaminidase) at their optimal pH values in soils at four agroecosystem(More)