Learn More
The microfilament cytoskeleton protein actin plays an important role in cell biology and affects cytokinesis, morphogenesis, and cell migration. These functions usually fail and become abnormal in cancer cells. The marine-derived macrolides latrunculins A and B, from the Red Sea sponge Negombata magnifica, are known to reversibly bind actin monomers,(More)
Expression of calcitonin (CT) and its receptor (CTR) is elevated in advanced prostate cancer, and activated CT-CTR autocrine axis plays a pivotal role in tumorigenicity and metastatic potential of multiple prostate cancer cell lines. Recent studies suggest that CT promotes prostate cancer metastasis by reducing cell-cell adhesion through the disassembly of(More)
Cell invasion and migration are required for the parent solid tumor cells to metastasize to distant organs. Microtubules form a polarized network, enabling organelle and protein movement throughout the cell. Cytoskeletal elements coordinately regulate cell's motility, adhesion, migration, exocytosis, endocytosis, and division. Thus, microtubule disruption(More)
The marine-derived macrolides latrunculins A ( 1) and B, from the Red Sea sponge Negombata magnifica, have been found to reversibly bind actin monomers, forming a 1:1 complex with G-actin and disrupting its polymerization. The microfilament protein actin is responsible for several essential functions within the cell such as cytokinesis and cell migration.(More)
The marine-derived macrolide latrunculins A and B, from the Red Sea sponge Negombata magnifica, are known to reversibly bind actin monomers, forming 1:1 complex with G-actin, disrupting its polymerization. Latrunculins have remarkable physiological properties and widely used as biochemical markers. Nevertheless, no QSAR studies have been developed for any(More)
Dysregulation of glycogen synthase kinase (GSK-3β) is implicated in the pathophysiology of many diseases, including type-2 diabetes, stroke, Alzheimer's, and others. A multistage virtual screening strategy designed so as to overcome known caveats arising from the considerable flexibility of GSK-3β yielded, from among compounds in our in-house database and(More)
The Red Sea sponge Hemimycale arabica afforded the known (Z)-5-(4-hydroxybenzylidene)-hydantoin (1), (R)-5-(4-hydroxybenzyl)hydantoin (2), and (Z)-5-((6-bromo-1H-indol-3-yl)methylene)-hydantoin (3). The natural phenylmethylene hydantoin (PMH) 1 and the synthetic (Z)-5-(4-(ethylthio)benzylidene)-hydantoin (4) showed potent in vitro anti-growth and(More)
Alcyonaria species are among the important marine invertebrate classes that produce a wealth of chemically diverse bioactive diterpenes. Examples of these are the potent microtubule disruptor sarcodictyins and eleutherobin. The genus Cladiella has proven to be a rich source of cytotoxic eunicellin-based diterpenoids. Five new eunicellin diterpenes,(More)
High expression of Nek2 has been detected in several types of cancer and it represents a novel target for human cancer. In the current study, structure-based pharmacophore modeling combined with multiple linear regression (MLR)-based QSAR analyses was applied to disclose the structural requirements for NEK2 inhibition. Generated pharmacophoric models were(More)
The mammalian target of rapamycin (mTOR) 8 has an important role in cell growth, proliferation, and survival. 9 mTOR is frequently hyperactivated in cancer, and therefore, it 10 is a clinically validated target for cancer therapy. In this study, 11 we combined exhaustive pharmacophore modeling and 12 quantitative structure−activity relationship (QSAR)(More)