Mohammad A. Khanfar

Learn More
Previously, we reported sipholenol A, a sipholane triterpenoid from the Red Sea sponge Callyspongia siphonella, as a potent reversal of multidrug resistance (MDR) in cancer cells that overexpressed P-glycoprotein (P-gp). Through extensive screening of several related sipholane triterpenoids that have been isolated from the same sponge, we identified(More)
The Red Sea sponge Hemimycale arabica afforded the known (Z)-5-(4-hydroxybenzylidene)-hydantoin (1). This natural phenylmethylene hydantoin (PMH) 1 and the synthetic (Z)-5-(4-(ethylthio)benzylidene)-hydantoin (2) showed potent in vitro and in vivo anti-growth and anti-invasive properties against PC-3M prostate cancer cells in MTT, spheroid disaggregation,(More)
The established anticancer and neuroprotective properties of oleocanthal combined with the reported role of mammalian target of rapamycin (mTOR) in cancer and Alzheimer's disease development encouraged us to examine the possibility that oleocanthal inhibits mTOR. To validate this hypothesis, we docked oleocanthal into the adenosine triphosphate binding(More)
Mammalian target of rapamycin (mTOR) is a serine/threonine kinase and member of the PI3K-related kinase (PIKK) family. It plays a central role in integrating signals from metabolism, energy homeostasis, cell cycle, and stress response. Aberrant PI3K/mTOR activation is commonly observed in diseases such as cancer, diabetes and Alzheimer's disease.(More)
The Red Sea sponge Hemimycale arabica afforded the known (Z)-5-(4-hydroxybenzylidene)-hydantoin (1), (R)-5-(4-hydroxybenzyl)hydantoin (2), and (Z)-5-((6-bromo-1H-indol-3-yl)methylene)-hydantoin (3). The natural phenylmethylene hydantoin (PMH) 1 and the synthetic (Z)-5-(4-(ethylthio)benzylidene)-hydantoin (4) showed potent in vitro anti-growth and(More)
Alcyonaria species are among the important marine invertebrate classes that produce a wealth of chemically diverse bioactive diterpenes. Examples of these are the potent microtubule disruptor sarcodictyins and eleutherobin. The genus Cladiella has proven to be a rich source of cytotoxic eunicellin-based diterpenoids. Five new eunicellin diterpenes,(More)
The two major Nicotiana tabacum tobacco cembranoids, (1 S,2 E,4 R,6 R,7 E,11 E)-2,7,11-cembratriene-4,6-diol (1) and its C-4 epimer, exhibit a wide range of interesting biological activities. Although the tumorigenesis inhibition activity of tobacco cembranoids have been known since the mid 1980's, only a limited number of investigations have targeted their(More)
The microfilament cytoskeleton protein actin plays an important role in cell biology and affects cytokinesis, morphogenesis, and cell migration. These functions usually fail and become abnormal in cancer cells. The marine-derived macrolides latrunculins A and B, from the Red Sea sponge Negombata magnifica, are known to reversibly bind actin monomers,(More)
Expression of calcitonin (CT) and its receptor (CTR) is elevated in advanced prostate cancer, and activated CT-CTR autocrine axis plays a pivotal role in tumorigenicity and metastatic potential of multiple prostate cancer cell lines. Recent studies suggest that CT promotes prostate cancer metastasis by reducing cell-cell adhesion through the disassembly of(More)
Dysregulation of glycogen synthase kinase (GSK-3β) is implicated in the pathophysiology of many diseases, including type-2 diabetes, stroke, Alzheimer's, and others. A multistage virtual screening strategy designed so as to overcome known caveats arising from the considerable flexibility of GSK-3β yielded, from among compounds in our in-house database and(More)