Mohamemead Naraghi

Learn More
Immobile and mobile calcium buffers shape the calcium signal close to a channel by reducing and localizing the transient calcium increase to physiological compartments. In this paper, we focus on the impact of mobile buffers in shaping steady-state calcium gradients in the vicinity of an open channel, i.e. within its "calcium microdomain." We present a(More)
Kenyon cells are the intrinsic interneurons of the mushroom bodies in the insect brain, a center for olfactory and multimodal processing and associative learning. These neurons are small (3-8 microns soma diameter) and numerous (340,000 and 400,000 in the bee and cockroach brains, respectively). In Drosophila, Kenyon cells are the dominant site of(More)
The Ca2+ binding kinetics of fura-2, DM-nitrophen, and the endogenous Ca2+ buffer, which determine the time course of Ca2+ changes after photolysis of DM-nitrophen, were studied in bovine chromaffin cells. The in vivo Ca2+ association rate constants of fura-2, DM-nitrophen, and the endogenous Ca2+ buffer were measured to be 5.17 x 10(8) M-1 s-1, 3.5 x 10(7)(More)
The spatiotemporal profile of intracellular calcium signals is determined by the flux of calcium ions across different biological membranes as well as by the diffusional mobility of calcium and different calcium buffers in the cell. To arrive at a quantitative understanding of the determinants of these signals, one needs to dissociate the flux contribution(More)
We tested a mixture of Calcium-Green-1 (CG-1) and Brilliantsulfaflavine (BS) for dual excitation ratiometric measurements of the intracellular free calcium concentration ([Ca2+]i) in bovine adrenal chromaffin cells. Dyes were coloaded (without being molecularly linked to each other) in the whole-cell configuration of the patch clamp technique. We compared(More)
  • 1