Mohamed T. Ghoneim

Learn More
Solid-state memory is an essential component of the digital age. With advancements in healthcare technology and the Internet of Things (IoT), the demand for ultra-dense, ultra-low-power memory is increasing. In this review, we present a comprehensive perspective on the most notable approaches to the fabrication of physically flexible memory devices. With(More)
Neuromorphic computer will need folded architectural form factor to match brain cortex's folded pattern for ultra-compact design. In this work, we show a state-of-the-art CMOS compatible pragmatic fabrication approach of building structurally foldable and densely integrated neuromorphic devices for non-volatile memory applications. We report the first ever(More)
Today's mainstream flexible electronics research is geared towards replacing silicon either totally, by having organic devices on organic substrates, or partially, by transferring inorganic devices onto organic substrates. In this work, we present a pragmatic approach combining the desired flexibility of organic substrates and the ultra-high integration(More)
  • 1