Mohamed Larbi Merroun

Learn More
Bacillus sphaericus JG-A12 is a natural isolate recovered from a uranium mining waste pile near the town of Johanngeorgenstadt in Saxony, Germany. The cells of this strain are enveloped by a highly ordered crystalline proteinaceous surface layer (S-layer) possessing an ability to bind uranium and other heavy metals. Purified and recrystallized S-layer(More)
Uranium mining waste piles, heavily polluted with radionuclides and other toxic metals, are a reservoir for bacteria that have evolved special strategies to survive in these extreme environments. Understanding the mechanisms of bacterial adaptation may enable the development of novel bioremediation strategies and other technological applications. Cell(More)
The presence of actinides in radioactive wastes is of major concern because of their potential for migration from the waste repositories and long-term contamination of the environment. Studies have been and are being made on inorganic processes affecting the migration of radionuclides from these repositories to the environment but it is becoming(More)
Three oligotrophic bacterial strains were cultured from the ground water of the deep-well monitoring site S15 of the Siberian radioactive waste depository Tomsk-7, Russia. They were affiliated with Actinobacteria from the genus Microbacterium. The almost fully sequenced 16S rRNA genes of two of the isolates, S15-M2 and S15-M5, were identical to those of(More)
The S-layer of Bacillus sphaericus strain JG-A12, isolated from a uranium-mining site, exhibits a high metal-binding capacity, indicating that it may provide a protective function by preventing the cellular uptake of heavy metals and radionuclides. This property has allowed the use of this and other S-layers as self-assembling organic templates for the(More)
This paper deals with lead biosorption by Myxococcus xanthus biomass in which dry biomass, accumulating up to 1.28 mmol of lead g(-1), is demonstrated to be a more efficient biosorbent than wet biomass. Dry biomass biosorption was found to be very rapid, reaching equilibrium after 5-10 min. Culture age, the initial lead concentration and pH affected this(More)
The main goal of this study is to compare the effects of pH, uranium concentration, and background electrolyte (seawater and NaClO4 solution) on the speciation of uranium(VI) associated with the marine bacterium Idiomarina loihiensis MAH1. This was done at the molecular level using a multidisciplinary approach combining X-ray Absorption Spectroscopy (XAS),(More)
Response of the subsurface soil bacterial community of a uranium mining waste pile to treatments with uranyl nitrate over different periods of time was studied under anaerobic conditions. The fate of the added U(VI) without supplementation with electron donors was investigated as well. By using 16S rRNA gene retrieval, we demonstrated that incubation with(More)
This work describes the mechanisms of uranium biomineralization at acidic conditions by Bacillus sphaericus JG-7B and Sphingomonas sp. S15-S1 both recovered from extreme environments. The U-bacterial interaction experiments were performed at low pH values (2.0-4.5) where the uranium aqueous speciation is dominated by highly mobile uranyl ions. X-ray(More)
A combination of EXAFS, transmission electron microscopy and energy-dispersive X-ray was used to conduct a molecular and atomic analysis of the uranium complexes formed by Acidithiobacillus ferrooxidans. The results demonstrate that this bacterium accumulates uranium as phosphate compounds. We suggest that at toxic levels when the uranium enters the(More)