Mohamed Ehab Ali

Learn More
Formulating nanoparticles for delivery to the deep lung is complex and many techniques fail in terms of nanoparticle stability. Spray freeze drying (SFD) is suggested here for the production of inhalable nanocomposite microcarriers (NCM). Different nanostructures were prepared and characterized including polymeric and lipid nanoparticles. Nanoparticle(More)
Solvent toxicity is one of the major drawbacks in the preparation of polymeric nanoparticles today. Here, polyethylene glycols (PEGs) are proposed as non-toxic solvents for the preparation of polymeric nanoparticles. Based on a preparation process similar to the solvent displacement technique, several process parameters were examined for their effects on(More)
INTRODUCTION Respiratory infections and diseases are accompanied by or exhibit inflammation. Recent advances in nanoparticle engineering technology, together with the increased knowledge of inflammatory pathophysiology, have ignited interest in the pulmonary delivery of anti-inflammatory agents (AIAs) to achieve local treatment of pulmonary inflammatory(More)
The use of nanoparticles for drug delivery is still restricted by their limited stability when stored in an aqueous medium. Freeze drying is the standard method for long-term storage of colloidal nanoparticles; however the method needs to be elaborated for each formulation. Spray freeze drying (SFD) is proposed here as a promising alternative for(More)
Particle size of nanoparticles and the respective polydispersity are key factors influencing their biopharmaceutical behavior in a large variety of therapeutic applications. Predicting these attributes would skip many preliminary studies usually required to optimize formulations. The aim was to build a mathematical model capable of predicting the particle(More)
Lung cancer, the deadliest solid tumor among all types of cancer, remains difficult to treat. This is a result of unavoidable exposure to carcinogens, poor diagnosis, the lack of targeted drug delivery platforms and limitations associated with delivery of drug to deep lung tissues. Development of a non-invasive, patient-convenient formula for the targeted(More)
  • 1