Mohamed A. Marahiel

Marcus Miethke3
Andreas Mielcarek2
3Marcus Miethke
2Andreas Mielcarek
2Tobias W. Giessen
Learn More
Nonribosomal peptide synthetases (NRPSs) are modular multidomain enzymes that act as an assembly line to catalyze the biosynthesis of complex natural products. The crystal structure of the 144-kilodalton Bacillus subtilis termination module SrfA-C was solved at 2.6 angstrom resolution. The adenylation and condensation domains of SrfA-C associate closely to(More)
Iron deprivation in bacteria causes the derepression of genes controlled by the ferric uptake regulator (Fur). The present microarray analysis of iron-starved Bacillus subtilis cells grown in minimal medium unveils additional physiological effects on a large number of genes linked to stringent-response regulation and to genes involved in amino acid(More)
  • René van der Ploeg, Ulrike Mäder, Georg Homuth, Marc Schaffer, Emma L. Denham, Carmine G. Monteferrante +7 others
  • 2011
Twin-arginine protein translocation (Tat) pathways are required for transport of folded proteins across bacterial, archaeal and chloroplast membranes. Recent studies indicate that Tat has evolved into a mainstream pathway for protein secretion in certain halophilic archaea, which thrive in highly saline environments. Here, we investigated the effects of(More)
In recent years it has become apparent that aminoacyl-tRNAs are not only crucial components involved in protein biosynthesis, but are also used as substrates and amino acid donors in a variety of other important cellular processes, ranging from bacterial cell wall biosynthesis and lipid modification to protein turnover and secondary metabolite assembly. In(More)
Iron is required as an element to sustain life in all eukaryotes and most bacteria. Although several bacterial iron acquisition strategies have been well explored, little is known about the intracellular trafficking pathways of iron and its entry into the systems for co-factor biogenesis. In this study, we investigated the iron-dependent process of heme(More)
Lasso peptides constitute a class of bioactive peptides sharing a knotted structure where the C-terminal tail of the peptide is threaded through and trapped within an N-terminal macrolactam ring. The structural characterization of lasso structures and differentiation from their unthreaded topoisomers is not trivial and generally requires the use of(More)
Non-ribosomal peptide products often contain modified building blocks or post-assembly line alterations of their peptide scaffolds with some of them being crucial for biological activity. These reactions such as halogenation, hydroxylation or glycosylation are mostly catalyzed by individual enzymes associated with the respective biosynthesis cluster. The(More)
CSDBase ( is an interactive Internet-embedded research platform providing detailed information on proteins containing the cold shock domain (CSD). It consists of two separated database cores, one dedicated to CSD protein information, and one to provide a powerful resource to relevant literature with emphasis on the(More)
  • Bastian Blauenburg, Andreas Mielcarek, Florian Altegoer, Christopher D. Fage, Uwe Linne, Gert Bange +1 other
  • 2016
The biosynthesis of iron sulfur (Fe-S) clusters in Bacillus subtilis is mediated by a SUF-type gene cluster, consisting of the cysteine desulfurase SufS, the scaffold protein SufU, and the putative chaperone complex SufB/SufC/SufD. Here, we present the high-resolution crystal structure of the SufS homodimer in its product-bound state (i.e., in complex with(More)
Modified cyclic dipeptides represent a diverse family of microbial secondary metabolites. They display a broad variety of biological and pharmacological activities and have long been recognized as privileged structures with the ability to bind to a wide range of receptors. This is due to their conformationally constrained 2, 5-diketopiperazine (DKP)(More)
  • 1