Learn More
Natural models of heart regeneration in lower vertebrates such as zebrafish are based on invasive surgeries causing mechanical injuries that are limited in size. Here, we created a genetic cell ablation model in zebrafish that facilitates inducible destruction of a high percentage of cardiomyocytes. Cell-specific depletion of over 60% of the ventricular(More)
Deletion 1p36 syndrome is recognized as the most common terminal deletion syndrome. Here, we describe the loss of a gene within the deletion that is responsible for the cardiomyopathy associated with monosomy 1p36, and we confirm its role in nonsyndromic left ventricular noncompaction cardiomyopathy (LVNC) and dilated cardiomyopathy (DCM). With our own data(More)
PURPOSE OF REVIEW A substantial genetic contribution to the etiology of atrial fibrillation has emerged in the last decade, and has bolstered links between this arrhythmia and other forms of heart disease. In this article, we will summarize the work that has defined the inherited diathesis toward atrial fibrillation, outline the genetic studies to date, and(More)
Kruppel-like factors (KLF) are zinc-finger DNA-binding transcription factors that are critical regulators of tissue homeostasis. Emerging evidence suggests that KLFs are critical regulators of muscle biology in the context of cardiovascular health and disease. The focus of this review is to provide an overview of the current state of knowledge regarding the(More)
The vertebrate heart muscle (myocardium) develops from the first heart field (FHF) and expands by adding second heart field (SHF) cells. While both lineages exist already in teleosts, the primordial contributions of FHF and SHF to heart structure and function remain incompletely understood. Here we delineate the functional contribution of the FHF and SHF to(More)
The vertebrate heart is one of the first organs to form, and its early function and morphogenesis are crucial for continued embryonic development. Here we analyze the effects of loss of Heart adaptor protein 1 (Hadp1), which we show is required for normal function and morphogenesis of the embryonic zebrafish heart. Hadp1 is a pleckstrin homology(More)
Understanding the developmental basis of cardiac electrical activity has proven technically challenging, largely as a result of the inaccessible nature of the heart during cardiogenesis in many organisms. The emergence of the zebrafish as a model organism has availed the very earliest stages of heart formation to experimental exploration. The zebrafish also(More)
Classic physiology studies dating to the 1930s demonstrate that moderate or transient glucocorticoid (GC) exposure improves muscle performance. The ergogenic properties of GCs are further evidenced by their surreptitious use as doping agents by endurance athletes and poorly understood efficacy in Duchenne muscular dystrophy (DMD), a genetic muscle-wasting(More)
  • 1