Modesto T. López-López

Learn More
SYNOPSIS This work reports a detailed study on the shear magnetorheology of suspensions of magnetic microfibers. The steady-state regime was investigated using a controlled-stress rheometer, for different concentrations of particles and under the presence of a broad range of applied magnetic fields (up to 512 kA m-1). The results were compared with those(More)
This work is devoted to the preparation of magnetite-covered clay particles in aqueous medium. For this purpose, magnetite nanoparticles were synthesized by a coprecipitation method. These magnetic particles are adhered to sodium montmorillonite (NaMt) particles in aqueous suspensions of both materials, by appropriate control of the electrolyte(More)
The effect of hydration on the biomechanical properties of fibrin and fibrin-agarose (FA) tissue-like hydrogels is reported. Native hydrogels with approximately 99.5% of water content and hydrogels with water content reduced until 90% and 80% by means of plastic compression (nanostructuration) were generated. The biomechanical properties of the hydrogels(More)
We report the preparation of novel magnetic field-responsive tissue substitutes based on biocompatible multi-domain magnetic particles dispersed in a fibrin-agarose biopolymer scaffold. We characterized our biomaterials with several experimental techniques. First we analyzed their microstructure and found that it was strongly affected by the presence of(More)
The aim of this study was to evaluate the viability and biomechanical properties of artificial human oral mucosa stroma (HOMS) subjected to cryopreservation with different cryoprotectant solutions. Artificial HOMS based on a fibrin-agarose matrix with human gingival fibroblasts cultured 7 days in vitro were cryopreserved with three cryoprotectant solutions:(More)
In regenerative medicine, the generation of biocompatible substitutes of tissues by in vitro tissue engineering must fulfil certain requirements. In the case of human oral mucosa, the rheological properties of tissues deserve special attention because of their influence in the acoustics and biomechanics of voice production. This work is devoted to the(More)
This paper is devoted to the steady-state rheological properties of two new kinds of ferrofluids. One of these was constituted by CoNi nanospheres of 24 nm in diameter, whereas the other by CoNi nanofibers of 56 nm in length and 6.6 nm in width. These ferrofluids were subjected to shear rate ramps under the presence of magnetic fields of different(More)
This work describes the preparation and stability evaluation of suspensions consisting of hydrophobic magnetite nanoparticles dispersed in different organic solvents. The ferrite particles are covered by a shell of chemisorbed oleate ions following a procedure that is described in detail. The oleate-covered particles were dispersed in different organic(More)
With this work we would like to emphasize the necessity of steric repulsion to stabilize novel ionic liquid-based ferrofluids. For this purpose, we prepared a suspension of magnetite nanoparticles coated with a double layer of oleic acid, dispersed in 1-ethyl-3-methylimidazolium ethylsulphate ([EMIM][EtSO(4)]). For comparison, a suspension of bare magnetite(More)
This paper reports the preparation of magnetic fluids consisting of magnetite nanoparticles dispersed in an ionic liquid. Different additives were used in order to stabilize the fluids. Colloidal stability was checked by magnetic sedimentation, centrifugation and direct observation. The results of these tests showed that a true ferrofluid was only obtained(More)