Mo Chao Huang

Learn More
Mutation and polymorphism detection is of increasing importance for a variety of medical applications, including identification of cancer biomarkers and genotyping for inherited genetic disorders. Among various mutation-screening technologies, enzyme mismatch cleavage (EMC) represents a great potential as an ideal scanning method for its simplicity and high(More)
Herein we present a lab-chip device for highly efficient and rapid detection of circulating tumor cells (CTCs) from whole blood samples. The device utilizes a microfabricated silicon microsieve with a densely packed pore array (10(5) pores per device) to rapidly separate tumor cells from whole blood, utilizing the size and deformability differences between(More)
Herein we present an integrated microfluidic device capable of performing two-step gene synthesis to assemble a pool of oligonucleotides into genes with the desired coding sequence. The device comprised of two polymerase chain reactions (PCRs), temperature-controlled hydrogel valves, electromagnetic micromixer, shuttle micromixer, volume meters, and(More)
Herein we present a simple, cost-effective TopDown (TD) gene synthesis method that eliminates the interference between the polymerase chain reactions (PCR) assembly and amplification in one-step gene synthesis. The method involves two key steps: (i) design of outer primers and assembly oligonucleotide set with a melting temperature difference of >10 degrees(More)
Here we present a simple, highly efficient, universal automatic kinetics switch (AKS) gene synthesis method that enables synthesis of DNA up to 1.6kbp from 1nM oligonucleotide with just one polymerase chain reaction (PCR) process. This method eliminates the interference between the PCR assembly and amplification in one-step gene synthesis and simultaneously(More)
This chapter presents TmPrime, a computer program to design oligonucleotide for both ligase chain reaction (LCR)- and polymerase chain reaction (PCR)-based de novo gene synthesis. The program divides a long input DNA sequence based on user-specified melting temperatures and assembly conditions, and dynamically optimizes the length of oligonucleotides to(More)
This chapter introduces a simple, cost-effective TopDown one-step gene synthesis method, which is suitable for the sequence assembly of fairly long DNA. This method can be distinguished from conventional gene synthesis methods by two key features: (1) the melting temperature of the outer primers is designed to be ∼8°C lower than that of the assembly(More)
  • 1