Learn More
Germ cells possess the unique ability to acquire totipotency during development in vivo as well as give rise to pluripotent stem cells under the appropriate conditions in vitro. Recent studies in which somatic cells were experimentally converted into pluripotent stem cells revealed that genes expressed in primordial germ cells (PGCs), such as Oct3/4, Sox2,(More)
Cell ablation technology is useful for studying specific cell lineages in a developing organ in vivo. Herein, we established a novel anti-Müllerian hormone (AMH)-toxin receptor-mediated cell knockout (Treck) mouse line, in which the diphtheria toxin (DT) receptor was specifically activated in Sertoli and granulosa cells in postnatal testes and ovaries(More)
Rheumatoid arthritis (RA) is a chronic inflammatory disease that causes irreversible joint damage and significant disability. However, the fundamental mechanisms underlying how inflammation and joint destruction in RA develop and are sustained chronically remain largely unknown. Here, we show that signal transducer and activator of transcription 3 (STAT3)(More)
Hematopoietic stem cells (HSCs) are maintained in a specific bone marrow (BM) niche in cavities formed by osteoclasts. Osteoclast-deficient mice are osteopetrotic and exhibit closed BM cavities. Osteoclast activity is inversely correlated with hematopoietic activity; however, how osteoclasts and the BM cavity potentially regulate hematopoiesis is not well(More)
Efficient integration of functional genes is an essential prerequisite for successful gene delivery such as cell transfection, animal transgenesis, and gene therapy. Gene delivery strategies based on viral vectors are currently the most efficient. However, limited cargo capacity, host immune response, and the risk of insertional mutagenesis are limiting(More)
Growth differentiation factor 11 (GDF11) is one of the significant genes that control skeletal formation. Knockout of GDF11 function causes abnormal patterning of the anterior/posterior axial skeleton. The mRNA of GDF11 is initially translated to a precursor protein that undergoes a proteolytic cleavage to generate the C-terminal peptide or mature GDF11,(More)
Suppressor of cytokine signaling (SOCS) 3 is a major negative feedback regulator of signal transducer and activator of transcription 3-activating cytokines. Studies using T-cell-specific SOCS3-deficient mice indicate that the absence of SOCS3 in T cells results in exacerbation of disease progression after infection by Leishmania major due to skewing of the(More)
Oct-4 is essential for normal embryonic development, and abnormal Oct-4 expression in cloned embryos contributes to cloning inefficiency. However, the causes of abnormal Oct-4 expression in cloned embryos are not well understood. As DNA methylation in regulatory regions is known to control transcriptional activity, we investigated the methylation status of(More)
The majority of somatic cell nuclear transferred (SCNT) embryos die before or after implantation. Many studies have focused on morphological remodeling of the donor nucleus and its associated cytoskeletal structures in the early events of nuclear transfer. However, little is known about the 2-cell stage of SCNT embryos after the first division. In this(More)