Learn More
RAP80 localizes to sites of DNA insults to enhance the DNA-damage responses. Here we identify TRAIP/RNF206 as a novel RAP80-interacting protein and find that TRAIP is necessary for translocation of RAP80 to DNA lesions. Depletion of TRAIP results in impaired accumulation of RAP80 and functional downstream partners, including BRCA1, at DNA lesions.(More)
Since the dysregulation of ribosome biogenesis is closely associated with tumor progression, in the current study, the critical role of ribosome biogenesis related signaling was investigated in melatonin and/or puromycin induced apoptosis in MDA-MB-231 breast cancer cells. Despite its weak cytotoxicity, melatonin from 3 mM attenuated the expression of 45S(More)
Histone modifications not only play important roles in regulating chromatin structure and nuclear processes but also can be passed to daughter cells as epigenetic marks. Accumulating evidence suggests that the key function of histone modifications is to signal for recruitment or activity of downstream effectors. Here, we discuss the latest discovery of(More)
We here investigated the anticancer mechanism of 1-stearoyl-sn-glycero-3-phosphocholine (LPC), one of the lysophosphatidylcholines, in chronic myelogenous leukemia (CML) K562 cells. LPC significantly showed cytotoxicity at 80 μM and induced apoptosis by sub-G1 accumulation, increase in Annexin V positive and caspase activation. LPC enhanced histone H3(More)
The heparan sulfate mimetic PG545 has been shown to exert anti-angiogenic and anti-metastatic activity in vitro and in vivo cancer models. Although much of this activity has been attributed to inhibition of heparanase and heparan sulfate-binding growth factors, it was hypothesized that PG545 may additionally disrupt Wnt signaling, an important pathway(More)
BACKGROUND AND PURPOSE The TNF-related apoptosis-inducing ligand (TRAIL) is a promising anticancer agent due to its remarkable ability to selectively kill tumour cells. However, because most tumours exhibit resistance to TRAIL-induced apoptosis, the development of combination therapies to overcome resistance to TRAIL is required for effective cancer(More)
Despite the antitumour effect of ursolic acid observed in several cancers, the underlying mechanism remains unclear. Thus, in the present study, the roles of AMP-activated protein kinase (AMPK) and glycogen synthase kinase 3 beta (GSK3β) were examined in ursolic acid induced apoptosis in HepG2 hepatocellular carcinoma cells. Ursolic acid significantly(More)
Functional suppression of spindle checkpoint protein activity results in apoptotic cell death arising from mitotic failure, including defective spindle formation, chromosome missegregation, and premature mitotic exit. The recently identified p31(comet) protein acts as a spindle checkpoint silencer via communication with the transient Mad2 complex. In the(More)
Upon shift to a hypoxic environment, cellular HIF-1α protein is stabilized, with a rapid decline in oxygen-sensitive hydroxylation. Several additional post-translational modifications of HIF-1α are critical in controlling protein stability during hypoxia. In the present study, we showed that SIRT1 stabilizes HIF-1α via direct binding and deacetylation(More)
BACKGROUND/AIMS The use of tyrosine kinase inhibitors (TKIs) to target active epidermal growth factor receptor (EGFR)-harbouring mutations has been effective in patients with advanced non-small-cell lung cancer (NSCLC). However, the use of TKIs in NSCLS patients with somatic EGFR mutations, particularly T790M, causes drug resistance. Thus, in the present(More)