Learn More
Recent studies have shown that multiple brain areas contribute to different stages and aspects of procedural learning. On the basis of a series of studies using a sequence-learning task with trial-and-error, we propose a hypothetical scheme in which a sequential procedure is acquired independently by two cortical systems, one using spatial coordinates and(More)
Remarkable human performance, such as playing the violin, is often based on motor skills that, once acquired, are retained for a long time. To examine how motor skills are retained, we trained monkeys and humans extensively to perform many visuomotor sequences and examined their performance after a long retention period of up to 18 months. For both monkeys(More)
To study the role of the basal ganglia in learning of sequential movements, we trained two monkeys to perform a sequential button-press task (2x5 task). This task enabled us to examine the process of learning new sequences as well as the execution of well-learned sequences repeatedly. We injected muscimol (a GABA agonist) into different parts of the(More)
1. To characterize procedural learning and memory, we devised a behavioral paradigm that allows us to examine the process of learning of new procedures, repeatedly and without serious difficulties for primate subjects. We trained two monkeys to perform a sequential button press task. Upon pressing of a home key, 2 of 16 (4 x 4 matrix) light-emitting diode(More)
The present project was aimed at investigating how two distinct and important difficulties (coordination difficulty and pronounced dependency on visual feedback) in Parkinson's disease (PD) affect each other for the coordination between hand transport toward an object and the initiation of finger closure during reach-to-grasp movement. Subjects with PD and(More)
Based on an assumption of movement control optimality in reach-to-grasp movements, we have recently developed a mathematical model of transport-aperture coordination (TAC), according to which the hand-target distance is a function of hand velocity and acceleration, aperture magnitude, and aperture velocity and acceleration (Rand et al. in Exp Brain Res(More)
It has been found in our previous studies that the initiation of aperture closure during reach-to-grasp movements occurs when the hand distance to target crosses a threshold that is a function of peak aperture amplitude, hand velocity, and hand acceleration. Thus, a stable relationship between those four movement parameters is observed at the moment of(More)
The purpose of this study was to characterize the nature and structure of procedural memory. We have previously studied the process of learning sequential behavioral procedures using monkeys. The monkey's task was to press five consecutive pairs of buttons (indicated by illumination) in the correct order for every pair, which he had to find by(More)
We previously demonstrated that the organization of a learned sequential movement, after long-term practice, is based on the entire sequence and that the information pertaining to the sequence is largely specific to the hand used for practice. However, it remained unknown whether these characteristics are present from the beginning of learning. To answer(More)
Reach-to-grasp movements of patients with pathology restricted to the cerebellum were compared with those of normal controls. Two types of paradigms with different accuracy constraints were used to examine whether cerebellar impairment disrupts the stereotypic relationship between arm transport and grip aperture and whether the variability of this(More)