Learn More
In most animals that live in temperate regions, reproduction is under photoperiodic control. In long-day breeders such as Japanese quail and Djungarian hamsters, type 2 deiodinase (Dio2) plays an important role in the mediobasal hypothalamus, catalyzing the conversion of prohormone T4 to bioactive T3 to regulate the photoperiodic response of the gonads.(More)
Reproduction of many temperate zone birds is under photoperiodic control. The Japanese quail is an excellent model for studying the mechanism of photoperiodic time measurement because of its distinct and marked response to changing photoperiods. Studies on this animal have suggested that the mediobasal hypothalamus (MBH) is an important centre controlling(More)
The molecular mechanisms responsible for seasonal time measurement have yet to be fully described. Recently, we used differential analysis to identify that the type 2 iodothyronine deiodinase (Dio2) gene is responsible for the photoperiodic response of gonads in Japanese quail. It was found that expression of Dio2 in the mediobasal hypothalamus is induced(More)
In birds, the mediobasal hypothalamus (MBH) including the infundibular nucleus, inferior hypothalamic nucleus, and median eminence is considered to be an important center that controls the photoperiodic time measurement. Here we show expression patterns of circadian clock genes in the MBH, putative suprachiasmatic nucleus (SCN), and pineal gland, which(More)
Prolactin (PRL) secretion is regulated by photoperiod in mammals and birds. In mammals, the pars tuberalis (PT) in the pituitary is involved in the regulation of photoperiodic regulation of PRL secretion. In birds, however, hypothalamic vasoactive intestinal peptide is implicated in PRL secretion, and physiological roles of the avian PT remain unknown. In(More)
Avian circadian rhythms are regulated by a multiple oscillatory system consisting of the pineal, the suprachiasmatic nucleus (SCN) and the eye. In the present study, ontogeny of circadian clock in the pineal and the SCN of chick embryo was examined using Per2 expression as a marker. A daily rhythmicity of Per2 expression was first detectable at embryonic(More)
Under experimental conditions, virtually all behaviors of Caenorhabditis elegans are achieved by combinations of simple locomotion, including forward, reversal movement, turning by deep body bending, and gradual shallow turning. To study how worms regulate these locomotion in response to sensory information, acidic pH avoidance behavior was analyzed by(More)
In order to adapt to seasonal changes, animals exhibit robust changes in their reproductive status, body weight, and molt. However, the molecular mechanisms regulating such seasonal changes in physiology and behavior are not fully understood. Here, we report the photoperiodic regulation of the insulin receptor (IR) gene in the infundibular nucleus(More)
In birds, the mediobasal hypothalamus (MBH) including the infundibular nucleus, inferior hypothalamic nucleus, and median eminence is considered to be an important center that controls the photoperiodic time measurement. Here we show expression patterns of circadian clock genes in the MBH, pu-tative suprachiasmatic nucleus (SCN), and pineal gland, which(More)
  • 1