Learn More
Thin-layer cell spectroelectrochemistry, featuring rigorous potential control and rapid redox equilibration within the cell, was used to measure the redox potential E(m)(Phe a/Phe a(-)) of pheophytin (Phe) a, the primary electron acceptor in an oxygen-evolving photosystem (PS) II core complex from a thermophilic cyanobacterium Thermosynechococcus elongatus.(More)
The thermophilic cyanobacterium, Thermosynechococcus elongatus, has been grown in the presence of Sr2+ instead of Ca2+ with the aim of biosynthetically replacing the Ca2+ of the oxygen-evolving enzyme with Sr2+. Not only were the cells able to grow normally with Sr2+, they actively accumulated the ion to levels higher than those of Ca2+ in the normal(More)
Fourier transform infrared (FTIR) difference spectra of all flash-induced S-state transitions of the oxygen-evolving complex were measured using photosystem II (PSII) core complexes of Synechococcus elongatus. The PSII core sample was given eight successive flashes with 1 s intervals at 10 degrees C, and FTIR difference spectra upon individual flashes were(More)
First, the crystal structure of cytochrome c-550 (the psbV1 gene product) from the thermophilic cyanobacterium Thermosynechococcus elongatus has been determined to a resolution of 1.8 A. A comparison of the T. elongatus cytochrome c-550 structure to its counterparts from mesophilic organisms, Synechocystis 6803 and Arthrospira maxima, suggests that(More)
The catalytic cycle of numerous enzymes involves the coupling between proton transfer and electron transfer. Yet, the understanding of this coordinated transfer in biological systems remains limited, likely because its characterization relies on the controlled but experimentally challenging modifications of the free energy changes associated with either the(More)
Photosynthetic oxygen evolution by plants and cyanobacteria is performed by water oxidation at the Mn(4)CaO(5) cluster in photosystem II. The reaction is known to proceed via a light-driven cycle of five intermediates called S(i) states (i = 0-4). However, the detailed reaction processes during the intermediate transitions remain unresolved. In this study,(More)
The main cofactors involved in the oxygen evolution activity of Photosystem II (PSII) are located in two proteins, D1 (PsbA) and D2 (PsbD). In Thermosynechococcus elongatus, a thermophilic cyanobacterium, the D1 protein is encoded by either the psbA(1) or the psbA(3) gene, the expression of which is dependent on environmental conditions. It has been shown(More)
Cyanobacteria have multiple psbA genes encoding PsbA, the D1 reaction center protein of the Photosystem II complex which bears together with PsbD, the D2 protein, most of the cofactors involved in electron transfer reactions. The thermophilic cyanobacterium Thermosynechococcus elongatus has three psbA genes differently expressed depending on the(More)
Photosynthetic water oxidation is performed via the light-driven S-state cycle in the water-oxidizing complex (WOC) of photosystem II (PS II). To understand its molecular mechanism, monitoring the reaction of substrate water in each S-state transition is essential. We have for the first time detected the reactions of water molecules in WOC throughout the(More)
Water oxidation by plants and cyanobacteria is performed via a light-driven cycle of five intermediates called S states (S(0)-S(4)) at the water oxidizing center (WOC) in photosystem II (PSII). The information about misses, i.e., the probabilities that the S-state transitions failed to advance, is crucial for detailed analysis of various spectroscopic data(More)