Learn More
Uptake of external sulfate from the environment and use of internal vacuolar sulfate pools are two important aspects of the acquisition of sulfur for metabolism. In this study, we demonstrated that the vacuolar SULTR4-type sulfate transporter facilitates the efflux of sulfate from the vacuoles and plays critical roles in optimizing the internal distribution(More)
Cation diffusion facilitator (CDF) proteins belong to a family of heavy metal efflux transporters that might play an essential role in homeostasis and tolerance to metal ions. We investigated the subcellular localization of Arabidopsis thaliana AtMTP1, a member of the CDF family, and its physiological role in the tolerance to Zn using MTP1-deficient mutant(More)
A large number of proteins in the tonoplast, including pumps, carriers, ion channels and receptors support the various functions of the plant vacuole. To date, few proteins involved in these activities have been identified at the molecular level. In this study, proteomic analysis was used to identify new tonoplast proteins. A primary requirement of any(More)
Expression and localization of myo-inositol-1-phosphate synthase (MIPS) in developing seeds of Arabidopsis thaliana was investigated. MIPS is an essential enzyme for production of inositol and inositol phosphates via its circularization of glucose-6-phosphate as the initial step. myo-inositol-6-phosphate (InsP(6) or phytic acid) is the predominant form of(More)
It is well known that saintpaulia leaf is damaged by the rapid temperature decrease when cold water is irrigated onto the leaf surface. We investigated this temperature sensitivity and the mechanisms of leaf damage in saintpaulia (Saintpaulia sp. cv. 'Iceberg') and other Gesneriaceae plants. Saintpaulia leaves were damaged and discolored when subjected to a(More)
Saintpaulia (African violet) leaves are known to be damaged by a rapid temperature decrease when cold water is applied to the leaf surface; the injury is ascribed to the chloroplast damage caused by the cytosolic pH decrease following the degradation of the vacuolar membrane in the palisade cells. In this report, we present evidence for the involvement of(More)
The supply of phosphorus, the essential element for plant growth and development, is often limited in natural environments. Plants employ multiple physiological strategies to minimize the impact of phosphate deficiency. In deciduous trees, phosphorus is remobilized from senescing leaves in autumn and stored in other tissues for reuse in the following(More)
The halophyte Mesembryanthemum crystallinum (common or crystalline ice plant) is a useful model for studying molecular mechanisms of salt tolerance. The morphology, physiology, metabolism, and gene expression of ice plant have been studied and large-scale analyses of gene expression profiling have drawn an outline of salt tolerance in ice plant. A rapid(More)
  • 1