Learn More
Chromatin is composed of DNA and a variety of modified histones and non-histone proteins, which have an impact on cell differentiation, gene regulation and other key cellular processes. Here we present a genome-wide chromatin landscape for Drosophila melanogaster based on eighteen histone modifications, summarized by nine prevalent combinatorial patterns.(More)
Male-specific lethal-2 (msl-2) is a RING finger protein that is required for X chromosome dosage compensation in Drosophila males. Consistent with the formation of a dosage compensation protein complex, msl-2 colocalizes with the other MSL proteins on the male X chromosome and coimmunoprecipitates with msl-1 from male larval extracts. Ectopic expression of(More)
The multisubunit MSL dosage compensation complex binds to hundreds of sites along the Drosophila single male X chromosome, mediating its hypertranscription. The male X chromosome is also coated with noncoding roX RNAs. When either msl3, mle, or mof is mutant, a partial MSL complex is bound at only approximately 35 unusual sites distributed along the X. We(More)
To gain insight into how genomic information is translated into cellular and developmental programs, the Drosophila model organism Encyclopedia of DNA Elements (modENCODE) project is comprehensively mapping transcripts, histone modifications, chromosomal proteins, transcription factors, replication proteins and intermediates, and nucleosome properties(More)
The Drosophila roX1 gene is X-linked and produces RNAs that are male-specific, somatic, and preferentially expressed in the central nervous system. These RNAs are retained in the nucleus and lack any significant open reading frame. Although all sexually dimorphic characteristics in Drosophila were thought to be controlled by the sex determination pathway(More)
The Male-specific lethal (MSL) complex up-regulates the single male X chromosome to achieve dosage compensation in Drosophila. We have proposed that MSL recognition of specific entry sites on the X is followed by local targeting of active genes marked by H3K36 trimethylation. Here we analyze the role of the MSL3 chromodomain in the second targeting step.(More)
The evolution of sex chromosomes has resulted in numerous species in which females inherit two X chromosomes but males have a single X, thus requiring dosage compensation. MSL (Male-specific lethal) complex increases transcription on the single X chromosome of Drosophila males to equalize expression of X-linked genes between the sexes. The biochemical(More)
The Drosophila MSL complex associates with active genes specifically on the male X chromosome to acetylate histone H4 at lysine 16 and increase expression approximately 2-fold. To date, no DNA sequence has been discovered to explain the specificity of MSL binding. We hypothesized that sequence-specific targeting occurs at "chromatin entry sites," but the(More)
The Drosophila melanogaster male-specific lethal (MSL) complex binds the single male X chromosome to upregulate gene expression to equal that from the two female X chromosomes. However, it has been puzzling that approximately 25% of transcribed genes on the X chromosome do not stably recruit MSL complex. Here we find that almost all active genes on the X(More)
BACKGROUND Chromatin immunoprecipitation on tiling arrays (ChIP-chip) has been widely used to investigate the DNA binding sites for a variety of proteins on a genome-wide scale. However, several issues in the processing and analysis of ChIP-chip data have not been resolved fully, including the effect of background (mock control) subtraction and(More)